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Analytical and numerical studies on heat
transfer of a nanofluid over a stretching/
shrinking sheet with second-order slip flow
model
M. M. Rashidi1,2, A. K. Abdul Hakeem3, N. Vishnu Ganesh3, B. Ganga4, M. Sheikholeslami5 and E. Momoniat6*

Abstract

Background: The objective of the present study is to analyse the steady second-order slip flow and heat transfer of an
incompressible viscous water-based nanofluid over a stretching/shrinking sheet both analytically and numerically.

Methods: Using the scaling group transformations, a system of partial differential equations governing the flow and
thermal fields is transformed into a system of ordinary differential equations. An exact solution to the momentum
equation is obtained, and the solution of the energy equation is obtained in terms of a hypergeometric function for
different water-based nanofluids containing Au, Ag, Cu, Al, Al2O3 and TiO2 nanoparticles. Numerical solutions are
obtained using a fourth-order Runge–Kutta method coupled with a shooting iteration technique.

Results: It is found that there exist a unique solution in the case of a stretching sheet with suction, but there is no
solution in both stretching and shrinking sheets with injection. Dual solutions are obtained in a shrinking sheet beyond
a suction critical point. The presence of nanoparticles decreases the suction critical point.

Conclusions: Excellent agreement is observed between the analytical and numerical results. The effects of important
physical parameters are analysed in detail. The corresponding local skin-friction coefficient and the reduced Nusselt
number are also calculated and displayed in tables.
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Background
Boundary-layer flow over a continuously stretching/
shrinking surface has many important applications in
engineering processes. Some of these applications in-
clude polymer extrusion, drawing of plastic films and
wires, glass fibre and paper production, manufacture of
foods, crystal growing, liquid films in condensation
process, etc. The flow induced by a moving boundary is
important in extrusion processes. The permeable stretch-
ing/shrinking sheet is one such example, which has been
studied with no slip regime or slip regime at the surface.
Pioneering work in this area was conducted by Sakiadis

(1961a, b, c). Sakiadis analysed the boundary-layer assump-
tions and the governing equations of boundary-layer flow
on a surface that is continuously stretching with a constant
speed. When the fluid is particulate such as emulsions, sus-
pensions, foams and polymer solutions, the no slip condi-
tion is inadequate. The problem of flow and heat transfer
over a stretching/shrinking surface with slip regime has
been investigated and discussed by many researchers
(Wang 2009; Sahoo 2010; Miklavcic and Wang 2006; Fang,
Zhang and Yao 2010; Abdul Hakeem et al. 2014).
The slip velocity for rarefied gases flowing over a solid sur-

face is the Maxwell (1879) slip condition and is widely im-
plemented in current rarefied gas flow investigations. Based
on Maxwell’s first-order slip model, Thompson developed a
second-order slip model, but many researchers reported that
Thompson’s model cannot predict the flow in high Knudsen
number (Kn). Beskok and Karniadakis (1999) suggested an
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improved second-order slip condition. For more details,
readers are encouraged to read the papers by Srikanth
(1969) and Wu (2008). Recently, Fang et al. (2010) consid-
ered the effects of the second-order slip on the flow of a
shrinking sheet. The case of a stretching sheet was studied
by Nandeppanavar et al. (2012). Turkyilmazoglu (2013) ana-
lysed the second-order slip flow and heat transfer over a
stretching/shrinking sheet with magnetic field effect.
Nanofluids or so-called smart fluids research have

attracted considerable attention in recent years owing to
their significant applications in engineering and technol-
ogy. The broad range of current and future applications
involving nanofluids has been given in the publications
(Das et al. 2007; Wang and Mujumdar 2008a, b; Sheremet
et al. 2015; Sheremet and Pop 2014; Zaimi et al. 2014).
Many recent studies on boundary-layer flow in nanofluids
have been undertaken with the absence of slip effects
(Khan and Pop 2010; Kuznetsov and Nield 2010; Gorder
et al. 2010; Akyildiz et al. 2011; Hamad 2011; Rashidi and
Erfani 2011; Vajravelu et al. 2011; Rashidi, Freidoonimehr
et al. 2013; Vishnu Ganesh, Ganga and Abdul Hakeem
2014; Vishnu Ganesh, Abdul Hakeem et al. 2014; Govin-
daraju et al. 2014; Ganga et al. 2014; Rashidi,·Freidooni-
mehr, N, Hosseini, A et al. 2013; Sheikholeslami and Ganji
2014; Hatami et al. 2014; Rashidi, Vishnu Ganesh et al.
2014; Rashidi, Momoniat et al. 2014; Garoosi et al. 2015;
Freidoonimehr and Rashidi 2015). Das (2012) obtained a
numerical solution for convective heat transfer perform-
ance of nanofluids over a permeable stretching surface in
the presence of a partial slip, thermal buoyancy and
temperature-dependent internal heat generation or ab-
sorption. Turkyilmazoglu (2012) investigated the behav-
iour of fluid flow and thermal transport of some
electrically conducting nanofluid over a permeable
stretching/shrinking sheet for the nanoparticles Cu, Ag,
CuO, Al2O3 and TiO2 with basic slip conditions. Noghre-
habad and Pourrajab (2012) analysed the effect of a partial
slip boundary condition on the flow and heat transfer of
nanofluids past a stretching sheet for prescribed constant
wall temperature. More recently, Ibrahim and Shankar
(2013) studied the partial slip (first-order slip) and thermal
slip effects on MHD boundary-layer flow and heat transfer
of a nanofluid past a permeable stretching sheet.
Bearing this in mind, we analyse the steady laminar flow

and heat transfer of an incompressible, viscous, water-based
nanofluid over a stretching/shrinking sheet with second-
order slip for different nanoparticles such as Au, Ag, Cu, Al,
Al2O3 and TiO2 both analytically and numerically.
The paper is divided up as follows: in section For-

mulation of the Problem, we derive a system of non-
linear partial differential equations modelling
boundary-layer flow on a stretching/shrinking sheet
with second-order slip. In section Solution for the
Flow Field, we use a similarity transformation to

reduce the system of partial differential equations to a
system of ordinary differential equations. Analytical
solutions for the velocity components are obtained in
this section. An exact solution in terms of a hyper-
geometric function is obtained for the energy equa-
tion in section Solution for the Thermal Transport.
Numerical solutions for the system are determined in
section Numerical Method for Solution. Results are
discussed in section Results and Discussion, and con-
cluding remarks are made in section Conclusions.

Formulation of the problem
Consider the steady, two-dimensional laminar slip flow
of an incompressible viscous water-based nanofluid over
a continuously stretching or shrinking sheet coinciding
with the plane �y = 0, the flow being confined to �y > 0
(see Fig. 1). The temperature at the stretching/shrinking
surface takes the constant value Tw, while the ambient
value, attained as �y , tends to infinity and takes the con-
stant value T∞ . The fluid is assumed to be a water-based
nanofluid containing different types of nanoparticles:
gold (Au), copper (Cu), silver (Ag), aluminium (Al), alu-
minium oxide (Al2O3) and titanium oxide (TiO2). It is
also assumed that the base fluid and the nanoparticles
are in thermal equilibrium and no slip occurs between
them. The thermo physical properties of the nanofluid
are considered as given in Table 1. Under the above as-
sumptions, the boundary-layer equations governing the
flow and thermal fields can be written in dimensional
form as

∂�u
∂�x

þ ∂�v
∂�y

¼ 0; ð1Þ

�u
∂�u
∂�x

þ �v
∂�u
∂�y

¼ μnf
ρnf

� �
∂2�u
∂�y2

; ð2Þ

�u
∂T
∂�x

þ �v
∂T
∂�y

¼ αnf
∂2T
∂�y2

; ð3Þ

where �x is the coordinate along the sheet, �u is the velocity
component in the �x direction, �y is the coordinate
perpendicular to the sheet, �v is the velocity compo-
nent in the �y direction, T is the local temperature of

the fluid, αnf ¼ knf
ρCpð Þ

nf

is the thermal diffusivity of the

nanofluid, ρnf is the effective density of the nanofluid,
μnf is the effective dynamic viscosity of the nanofluid
and ρCp

� �
nf

is the heat capacitance and knf is the
thermal conductivity of the nanofluid are given as
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ρnf ¼ 1−φð Þρf þ φρs; μnf ¼
μf

1−φð Þ2:5 ;

ρCp
� �

nf ¼ 1−φð Þ ρCp
� �

f þ φ ρCp
� �

s;

knf ¼ kf
ks þ 2kf −2φ kf −ks

� �
ks þ 2kf þ φ kf −ks

� �
8<
:

9=
;:

Here, φ is the solid volume fraction. The boundary
conditions are given by

�u ¼ dc�x þ �Uslip; �v ¼ �vw �xð Þ; T ¼ Tw at �y ¼ 0;
�u→0; T→T∞ as �y→∞;

ð4Þ

where d = 1 denotes stretching and d = −1 denotes
shrinking sheets, respectively. Parameter c is a constant
and �Uslip is the slip velocity at the wall; vw is the wall
mass transfer velocity. The slip velocity model (valid for

arbitrary Knudsen numbers, Kn) (Nandeppanavar et al.
2012) is given by

�Uslip ¼ 2
3

3−αl3

α
−
3
2
1−l2

Kn

� �
λ
∂�u
∂�y

−
1
4

l4 þ 2

K2
n

1−l2
� �" #

λ2
∂2�u
∂�y2

¼ A
∂�u
∂�y

þ B
∂2�u
∂�y2

;

ð5Þ

where l ¼ min 1=Kn; 1½ �; α is the momentum accommo-
dation coefficient with 0≤α≤1 and λ is the molecular
mean free path. Based on the definition of l, it is noticed
that for any given value of Kn, we have 0≤l≤1. The mo-
lecular mean free path is always positive. Thus, we know
that B < 0, and hence, the second term in right hand side
of Eq. 5 is a positive number.
There are several applications that involve micro-

scale devices including heat exchangers, micro-power
system and sensor. The gas flow in micro channels
classified into four flow regimes based on Knudsen
(Kn) number (Beskok and Karniadakis 1994) as: (1)
continuum flow regime (Kn ≤ 0.001), (2) slip flow re-
gime (0.001 ≤ Kn ≤0.1), (3) transition flow regime
(0.1 ≤ Kn ≤ 10) and (4) free molecular flow regime
(Kn > 10). The Navier–Stokes equations are first-order
accurate in Kn number increases; so, most researchers
insisted that the Navier–Stokes equations cannot gov-
ern slip flow in transition region with a second-order
or higher-order slip model.
By introducing the stream function ψ, which is defined

as u ¼ ∂ψ
∂y , v ¼ − ∂ψ

∂x and the following non-dimensional

variables

Table 1 Thermo–physical properties of water and nano
particles (Domkundwar and Domdundwar 2004)

ρ (kg/m3) Cp (J/kg K) k (W/m K)

Pure water 997.1 4179 0.613

Gold (Au) 19,300 132 296

Silver (Ag) 10,500 235 429

Copper (Cu) 8933 385 401

Aluminium (Al) 2710 913 201

Aluminium oxide (Al2O3) 3970 765 40

Titanium oxide (TiO2) 4250 686.2 8.9538

Fig. 1 Schematic diagram of boundary-layer flow over a stretching sheet
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x ¼ �xffiffiffiffi
vf
c

r ; y ¼ �yffiffiffiffi
vf
c

r ; u ¼ �uffiffiffiffiffiffi
vf c

p ; v ¼ �vffiffiffiffiffiffi
vf c

p ;

θ ¼ T−T∞

Tw−T∞
;

ð6Þ
Equations 1–3 take the following form

∂2ψ
∂x∂y

−
∂2ψ
∂y∂x

¼ 0; ð7Þ

∂ψ
∂y

∂2ψ
∂x∂y

−
∂ψ
∂x

∂2ψ
∂y2

¼ 1

1−φþ φ ρs
ρf

� � 1

1−φð Þ2:5
∂3ψ
∂y3

( )
;

ð8Þ

∂ψ
∂y

∂θ
∂x

−
∂ψ
∂x

∂θ
∂y

¼ knf
kf Pr

� �
1

1−φð Þ þ φ
ρCpð Þ

s

ρCpð Þ
f

∂2θ
∂y2

; ð9Þ

where the boundary conditions in Eq. 4 become

∂ψ
∂y

¼ dxþ γ
∂2ψ
∂y2

þ δ
∂3ψ
∂y3

;
∂ψ
∂x

¼ s; θ ¼ 1 at

y ¼ 0;
∂ψ
∂y

→0; θ→0 as y→∞;

ð10Þ

where ρf is the density of the pure fluid, ρCp

� �
f
is

the specific heat parameter of the base fluid, kf is
the thermal conductivity of the base fluid, ρs is the
density of the nanoparticles, ρCp

� �
s

is the specific
heat parameter of the nanoparticles, ks is the ther-
mal conductivity of the nanoparticles, Pr ¼ vf

αf
is the

Prandtl number, γ is the first-order velocity slip par-

ameter with 0 < γ ¼ A
ffiffiffiffiffiffiffiffiffi
c=vf

p
and δ is the second-

order velocity slip parameter with 0 > δ ¼ Bc=vf:
Now, using the scaling group G of transformations,

we get the scaling transformations as stated in
(Hamad 2011; Vishnu Ganesh, Ganga and Abdul
Hakeem 2014)

η ¼ y; ψ ¼ xF ηð Þ; θ ¼ θ ηð Þ: ð11Þ

Solution for the flow field
Now, substituting the similarity transformations (11) in
Eq. 8, we get

F ′′′ þ ð1−φÞ2:5 1−φþ φ
ρs
ρf

" #�
FF ′′−F ′2

�
¼ 0; ð12Þ

and the corresponding boundary conditions are

F ¼ s; F′ ¼ d þ γF″ þ δF ′″ at η ¼ 0;
F ′→0 as η→∞;

ð13Þ

where the primes denote the differentiation with respect
to η.
The exact solution to the differential Eq. 12 satisfying

the boundary conditions (13) is obtained as

F ηð Þ ¼ sþ d 1−e−βη
� �

β 1þ γβ−δβ2
� � ; ð14Þ

substituting Eq. 14 in Eq. 12 gives the following
fourth-order algebraic equation for the characteristic
parameter β

d 1−φð Þ2:5 1−φþ φ s

f

	 

− s 1−φð Þ2:5 1−þ s

f

	 

−β

� �

β δβ2−γβ−1
� � ¼ 0:

ð15Þ
The velocity profile for both the stretching and shrink-

ing surface is obtained as

F ′ ηð Þ ¼ de−βη

1þ γβ−δβ2
� � ; ð16Þ

The corresponding four roots of Eq. 15 are analytically
expressed as

Table 4 Comparison of −θ′(0) with d = 1, s = 0, γ = 0, δ = 0 and
ϕ = 0

Pr Present results Wang
(1989)Analytical Numerical

0.07 0.065563 0.0655624591 0.0656

0.2 0.169089 0.1690885734 0.1691

U denotes upper branch solutions and L denotes lower branch solutions

Table 3 Comparison of upper and lower branch of β for d = −1,
ϕ = 0 and δ = −1

s γ Present results Turkyilmazoglu
(2013)βAnalytical Numerical

2U 1 1.921290 1.9212896099 1.9212896

3U 3 2.982202 2.9822016783 2.9822017

2L 1 0.400529 0.4005289858 0.40052899

3L 3 0.213017 0.2130166962 0.21301670

Table 2 Comparison of −F′′(0) for stretching sheet

γ δ Present results with ϕ = 0, d = 1 and s = 2 Turkyilmazoglu (2013)
with M = 0Analytical Numerical

1 −1 0.281688 0.2816883004 0.28168830

3 −3 0.104492 0.1044918663 0.10449187

5 −5 0.064205 0.0642051113 0.06420511
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a

b

Fig. 2 a β-curves in stretching sheet case. Physically meaningful solutions correspond to β > 0. I corresponds to β in Eq. 17I, II corresponds to β
in Eq. 17II, III corresponds to β in Eq. 17III, IV corresponds to β in Eq. 17IV. b β-curves in shrinking sheet case. Physically meaningful solutions
correspond to β > 0. I corresponds to β in Eq. 17I, II corresponds to β in Eq. 17II, III corresponds to β in Eq. 17III, IV corresponds to β in Eq. 17IV
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β ¼ −
−γ−Csδ

4δ
−
β4
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
β6−β7

p
2

; ð17IÞ

β ¼ −
−γ−Csδ

4δ
−
β4
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
β6−β7

p
2

; ð17IIÞ

β ¼ −
−γ−Csδ

4δ
þ β4

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β6 þ β7

p
2

; ð17IIIÞ

β ¼ −
−γ−Csδ

4δ
þ β4

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β6 þ β7

p
2

; ð17IVÞ

where

β1 ¼ 21=3 12 Cdð Þδ þ −1þ Csγð Þ2−3 Csð Þ −γ−Csδð Þ� �
;

β2 ¼ 27 Csð Þ2δ−72 Cdð Þδ −1þ Csγð Þ þ 2 −1þ Csγð Þ3

−9 Csð Þ −1þ Csγð Þ −γ−Csδð Þ þ 27 Cdð Þ −γ−Csδð Þ2;

β3 ¼ β2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4

β1
21=3

� �3

þ β22

s0
@

1
A

1=3

;

β4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 −1þ Csγð Þ

3δ
þ −γ−Csδð Þ2

4δ2
þ β1
3δβ3

þ β3
3δ21=3

s
;

β5 ¼
−8 Csð Þ

δ
þ 4 −1þ Csγð Þ −γ−Csδð Þ

δ2
−

−γ−Csδð Þ3
δ3

;

β6 ¼
−4 −1þ Csγð Þ

3δ
þ −γ−Csδð Þ2

2δ2
−

β1
3δβ3

−
β3

3δ21=3
;

β7 ¼
β5
4β4

; and C ¼ 1−φð Þ2:5 1−φþ φ
ρs
ρf

2
4

3
5:

The non-dimensional velocity components are given
by

u ¼ x
de−βη

1þ βγ−δβ2
� � ; v ¼ − sþ d 1−e−βη

� �
β 1þ βγ−δβ2
� �

0
@

1
A:

ð18Þ

The dimensional velocity components are given by

a

b

Fig. 4 a Effects of first-order slip parameter and nanoparticle volume
fraction parameter on F′(η) with s = 2, d = −1 and δ = −2 for shrinking
sheet (upper branch solution). b Effects of first-order slip parameter
and nanoparticle volume fraction parameter on F′(η) with s = 2, d =
−1 and δ = −2 for shrinking sheet (lower branch solution)

Fig. 3 Effects of first-order slip parameter and nanoparticle volume
fraction parameter on F′(η) with s = 2, d = 1 and δ = −2 for
stretching sheet
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�u ¼ c�x
de

−β

ffiffiffiffi
c
vf

r
�y

1þ βγ−δβ2
� � ; �v ¼ − ffiffiffiffiffiffi

cvf
p

sþ

d 1−e
−β

ffiffiffiffi
c
vf

r
�y

0
B@

1
CA

β 1þ βγ−δβ2
� �� �

0
BBBBBBBB@

1
CCCCCCCCA
:

ð19Þ

The shear stress at the stretching sheet characterized
by the skin-friction coefficient Cf, is given by

Re1=2x Cf ¼ −2

1−φð Þ2:5 F
″ 0ð Þ

¼ 2

1−φð Þ2:5
dβ

1þ βγ−δβ2
� � ; ð20Þ

where Rex ¼ �x�uw �xð Þ=vf is the local Reynolds number
based on the stretching/shrinking velocity �uw �xð Þ and R
e1=2x Cf is the local skin-friction coefficient.

Solution for the thermal transport
Substituting the similarity transformations (11) into
Eq. 9, we get

θ′′ þ
kf Pr 1−φð Þ þ φ

ρCpð Þs
ρCpð Þf

� �
knf

Fθ′ ¼ 0; ð21Þ

and the corresponding boundary conditions are

θ 0ð Þ ¼ 1 and θ ∞ð Þ ¼ 0: ð22Þ

The primes in Eq. 21 denote differentiation with re-
spect to η. Making the substitution ξ ¼ e−βη , Eq. 21
becomes

ξθξξ þ l−p1ξð Þθξ ¼ 0; ð23Þ
where the boundary conditions (22) are given by

θ 1ð Þ ¼ 1 and θ 0ð Þ ¼ 0: ð24Þ
The solution of Eq. 23 with the corresponding bound-

ary conditions (24) in terms of η is given by

θ ηð Þ ¼ e−βη 1−lð Þ M 1−l; 2−l; p1e
−βη

� �
M 1−l; 2−l;p1ð Þ

� �
; ð25Þ

a

b

Fig. 6 a Effects of second-order slip parameter and nanoparticle volume
fraction parameter on F′(η) with s= 2, d=−1 and γ= 2 shrinking sheet
(upper branch solution). b Effects of second-order slip parameter and
nanoparticle volume fraction parameter on F′(η) with s = 2, d = −1 and
γ = 2 shrinking sheet (lower branch solution)

Fig. 5 Effects of second-order slip parameter and nanoparticle volume
fraction parameter on F′(η) with s= 2, d= 1 and γ= 2 for stretching sheet
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where M is the hyper geometric function (Arfken 1985)
defined by

M a½ �; b½ �; zð Þ ¼ 1þ a

b
zþ a aþ 1ð Þ

b bþ 1ð Þ
z2

2!
þ…

¼
X∞
i¼0

að Þi
bð Þi

zi

i!

ð26Þ

and

l ¼ 1−g=β; p1 ¼ −h=β; g ¼ s
D
þ d

Dβ 1þ βγ−δβ2
� � ;

h ¼ d

Dβ 1þ βγ−δβ2
� � ; and D ¼

Prkf 1−φð Þ þ φ
ρCp
� �

s

ρCp
� �

f

0
@

1
A

knf

0
BBBBBB@

1
CCCCCCA

−1

:

The quantity of practical interest in this section is the
Nusselt number, Nux, defined as

Nux ¼
�x�qw

kf Tw−T∞ð Þ ; ð27Þ

where �qw ¼ − knfð Þ ∂T
∂�y

� �
�y¼0

is the local surface heat flux.
Using Eq. 6 and Eq. 11, we obtain the following reduced
Nusselt number

Re−1=2x Nux ¼ knf
kf

−θ′ 0ð Þ� �
: ð28Þ

Numerical method for solution
The non-linear differential Eqs. 12 and 21 along with the
boundary conditions (13) and (22) form a two-point
boundary value problem and are solved using a shooting
technique together with a fourth-order Runge–Kutta in-
tegration scheme by converting the non-linear differen-
tial equations into an initial value problem. In this
method, we have to choose a suitable finite value of
η→∞, say η∞. We then have to solve the system of first-
order ordinary differential equations given by

Fig. 7 a Effects of first-order slip parameter and nanoparticle volume
fraction parameter on θ(η) with s = 2, δ = −2, d = 1 and Pr = 6.2 for
stretching sheet. b Effects of first-order slip parameter and nanoparticle
volume fraction parameter on θ(η) with s = 2, δ = −2, d =−1 and Pr = 6.2
for shrinking sheet (upper branch solution). c Effects of first-order slip
parameter and nanoparticle volume fraction parameter on θ(η) with s =
2, δ = −2, d = −1 and Pr= 6.2 for shrinking sheet (lower branch solution)
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F ′ ¼ p; p′ ¼ q; q′ ¼ − 1−φð Þ2:5 1−φþ φ
ρs
ρf

2
4

3
5 Fq−p2ð Þ; θ′ ¼ z;

z′ ¼ −

kf Pr 1−φð Þ þ φ
ρCp
� �

s

ρCp
� �

f

0
@

1
A

knf
Fz;

ð29Þ
with the initial conditions

F 0ð Þ ¼ s; p 0ð Þ ¼ 1þ γq 0ð Þ þ δq′ 0ð Þ; and θ 0ð Þ ¼ 1:

ð30Þ
To solve (29) with (30), we need the values for q 0ð Þ, i.e.,

F′ ′(0) and z 0ð Þ, i.e., θ′(0), but no such values are given. Ini-
tial guess values for F″(0) and θ′(0) are chosen, and the
fourth-order Runge–Kutta integration scheme is applied to
obtain a solution. Then, we compare the calculated values
of F′(η) and θ(η) at η∞ with the given boundary conditions
F′(η∞) = 0 and θ η∞ð Þ ¼ 0 and adjust the values of F′ ′(0)
and θ′(0) using the shooting technique to give better ap-
proximation for the solution. The process is repeated until
we get the results correct up to the desired accuracy of 10−8

level, which fulfils the convergence criterion.

Results and discussion
In order to get the clear insight of the physical problem,
results are discussed with the help of graphical illustra-
tions. The effects of first-order slip parameter (γ) and
second-order slip parameter (δ) with nanoparticle vol-
ume fraction parameter (φ) and Prandtl number (Pr) on
velocity and temperature profiles are discussed for Au-
water in both stretching and shrinking sheet cases. The
range of nanoparticle volume fraction is taken as 0 to
0.2. The Prandtl number Pr of the base fluid (water) is
kept constant at 6.2. The values of local skin-friction co-
efficient − F″(0) and reduced Nusselt number are tabu-
lated for different nanofluids with nanoparticles Au, Ag,
Cu, Al, Al2O3 and TiO2. In order to verify present ana-
lytical and numerical results, we have compared shrink-
ing sheet solutions β and − F″(0) values with those of
(Turkyilmazoglu 2013) and − θ′(0) with (Wang 1989) in
the absence of nanoparticle volume fraction parameter.
The comparisons in the above cases are found to be in
excellent agreement as shown in Tables 2, 3 and 4.

Fig. 8 a Effects of second-order slip parameter and nanoparticle volume
fraction parameter on θ(η) with s = 2, γ =2, d = 1 and Pr = 6.2 for
stretching sheet. b Effects of second-order slip parameter and
nanoparticle volume fraction parameter on θ(η) with s = 2, γ = 2,
d = −1 and Pr = 6.2 for shrinking sheet (upper branch solution).
c Effects of second-order slip parameter and nanoparticle volume
fraction parameter on θ(η) with s = 2, γ = 2, d = −1 and Pr = 6.2
for shrinking sheet (lower branch solution)
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Results for the solution β
Figure 2a, b is plotted to discuss the nature of the solu-
tion β of the algebraic Eq. 15 in both stretching and
shrinking sheet cases. It is observed that there is only
one physically meaningful solution in the case of a
stretching sheet (d = 1) with suction (s > 0), and this is
not true for a stretching sheet with injection (s < 0), or
for a shrinking sheet (d = −1) as discussed in (Gorder
and Vajravelu 2011) which is valid for the present case
also. Closely look at Fig. 2a, it is seen that the solution β
decreases with the increase of γ and |δ| and it increases
with φ. When comparing the solution domain with Fang
et al. (2010), it is clear from Fig. 2b that the critical
values of scritical(γ, δ, φ) are located in the range 0 < s < 2
depending on the specific value of γ, δ and φ. When the
suction parameter is less than scritical(γ, δ, φ), there is no
physically valid solution for the problem. For the upper
branch solution, the value of β increases with γ, |δ| and
φ, and an opposite behaviour is noted for lower branch
solution. It is very interesting to note that Fang et.al
(2010) obtained the scritical point near s ≥ 1 with γ =3
and δ = −3 in the absence of φ (for ordinary fluid) but
for nanofluids scritical lies between 0 and 1 with γ = 3 and

δ = −3 . It may be concluded that the presence of nanopar-
ticles decreases the value of scritical. Eq. 17IV gives a unique
solution for the stretching sheet and upper branch solu-
tion for the shrinking sheet. The lower branch solution is
obtained by either Eq. 17II or Eq. 17III which depends on
the choice of physical parameters.

Results for velocity profile
The effects of the first-order slip parameter (γ) and
nanoparticle volume fraction (φ) on the velocity profile

F
0
ηð Þ of Au-water in the case of stretching sheet are

shown in Fig. 3 with s = 2, d = 1 and δ ¼ −2. It is clear
from the figure that the velocity component reduces
with an increase in γ. The presence of nanoparticles in
base fluid decreases the velocity component F′(η). The
combined effect of γ and φ leads to the decrease of the
momentum boundary-layer thickness. When slip occurs,
the flow velocity near the sheet is no longer equal to the
stretching velocity of the sheet. With the increase in γ,
such slip velocity increases and consequently fluid
velocity decreases because under the slip condition, the
pulling of the stretching sheet can be only partly

Table 5 Values of −F′′(0) for stretching sheet with s = 2 and d = 1

ϕ γ δ −F′′ (0)

Au Ag Cu Al Al2O3 TiO2

0.1 1 −1 0.17836003 0.22894449 0.24043332 0.29334067 0.28197415 0.27946592

−2 0.10032419 0.13553137 0.14429167 0.19075693 0.17962771 0.17728033

−3 0.06979895 0.09630406 0.10314181 0.14164856 0.13201804 0.13002428

0.1 1 −1 0.17836003 0.22894449 0.24043332 0.29334067 0.28197415 0.27946592

2 0.15142892 0.18650305 0.19409098 0.22739268 0.22046164 0.21891554

3 0.13155076 0.15729048 0.16266828 0.18551729 0.18086248 0.17981676

0.1 1 −1 0.17836003 0.22894449 0.24043332 0.29334067 0.28197415 0.27946592

0.15 0.16088220 0.21854801 0.23260540 0.30064199 0.28588966 0.28261147

0.2 0.15270378 0.21475349 0.23052643 0.30844256 0.29177766 0.28800837

Table 6 Values of −F′′(0) for shrinking sheet with s = 2 and d = −1

ϕ γ δ -F′′ (0)

Au Ag Cu Al Al2O3 TiO2

0.1 1 −1U −0.17960669 −0.23258925 −0.24494149 −0.30368830 −0.2908699 −0.28804534

−2U −0.10077851 −0.13712679 −0.14637168 −0.19768896 −0.18496089 −0.18231704

−3U −0.07003008 −0.09717569 −0.10430211 −0.14611977 −0.13531669 −0.13311438

0.1 1 −1U −0.17960669 −0.23258925 −0.24494149 −0.30368830 −0.2908699 −0.28804534

2 −0.15218956 −0.18845647 −0.19643731 −0.23208310 −0.22461869 −0.22295147

3 −0.13204851 −0.15845659 −0.16404150 −0.15100590 −0.15002771 −0.14984098

0.1 1 −1U −0.17960669 −0.23258925 −0.24494149 −0.30368830 −0.2908699 −0.28804534

0.15 −0.16168775 −0.22152807 −0.23650994 −0.31185534 −0.29528583 −0.29158832

0.2 −0.15335046 −0.21751626 −0.23428173 −0.32032628 −0.30192805 −0.29767731
UDenotes upper branch solutions
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transmitted to the fluid. The presence of nanoparticles
and the first-order slip lead to decrease the momentum
boundary-layer thickness.
Figure 4a, b depicts the effects of γ and φ on the vel-

ocity profile in the case of shrinking sheet. Velocity pro-
files for upper and lower branch solutions are shown in
Fig. 4a, b, respectively. It is noted that an increase in γ
and φ leads to increase the nanofluid velocity profile in
upper branch solution case. The velocity component F
′(η) increases as γ increases for some values of η in
lower branch solution case. As η rises, the increasing
values of γ lead to decrease the velocity of Au-water. In-
creasing values of both the parameters γ and φ increase
the velocity of Au-water in the case of upper branch so-
lution. It is seen that the first-order slip and the nano-
particle volume fraction parameters have an opposite
effect on the velocity profile of Au-water in the case of
shrinking sheet upper branch solution compared to
stretching sheet.

The effects of second-order slip parameter δ and
nanoparticle volume fraction on F′(η) are shown in Fig. 5
in the case of stretching sheet. It is clear that the velocity
profile decreases with an increase in |δ| and φ. The
combined effect of both |δ| and φ affects the nanofluid
velocity profile.
Figure 6a, b is plotted for F′(η) for different values of δ

and φ in the case of shrinking sheet. The velocity profile
for upper branch solution and lower branch solution is
presented in Fig. 6a, b, respectively. It is observed that
the increasing values of both |δ| and φ lead to increase
the velocity of the nanofluid in case of upper branch so-
lution. The second-order slip parameter (|δ|) has the
same effect as first-order slip parameter γ on nanofluid
velocity in the case of lower branch solution.

Results for temperature profile
Figure 7a–c illustrates the effects of γ and φ on
temperature profile of Au-water in case of stretching

Table 7 Values of −F′′(0) for shrinking sheet with s = 2 and d = −1

ϕ γ δ −F′′ (0)

Au Ag Cu Al Al2O3 TiO2

0.1 1 −1L −0.24339911 −0.2479996 −0.24938371 −0.25987209 −0.25666292 −0.25606086

−2L −0.21750716 −0.22045728 −0.22132829 −0.22765880 −0.22577468 −0.22541583

3L −0.19862221 −0.20066582 −0.20126139 −0.20547326 −0.20424223 −0.20400553

0.1 1 −1L −0.24339911 −0.2479996 −0.24938371 −0.25987209 −0.25666292 −0.25606086

2 −0.18144291 −0.18391484 −0.18464900 −0.19005022 −0.18843012 −0.18812281

3 −0.14570031 −0.14724986 −0.14770633 −0.18803118 −0.18313229 −0.18202955

0.1 1 −1L −0.24339911 −0.2479996 −0.24938371 −0.25987209 −0.25666292 −0.25606086

0.15 −0.24217275 −0.24688249 −0.24842191 −0.26252200 −0.25767099 −0.25682109

0.2 −0.24164250 −0.24650170 −0.24818008 −0.26620015 −0.25937464 −0.25825563
LDenotes lower branch solutions

Table 8 Values of −θ′(0) for stretching sheet with s = 2 and d = 1

ϕ Pr γ δ −θ′(0)

Au Ag Cu Al Al2O3 TiO2

0.1 6.2 1 −1 8.96763224 8.95931998 9.18190038 9.00877818 9.21615941 9.54160066

−2 8.96168204 8.94802231 9.16900511 8.98720064 9.19663750 9.52240216

−3 8.95934365 8.94322633 9.16341448 8.97658448 9.18734256 9.51332346

0.1 6.2 1 −1 8.96763224 8.95931998 9.18190038 9.00877818 9.21615941 9.54160066

2 8.96558323 8.95420816 9.17571320 8.99499657 9.20449933 9.53029404

3 8.96406781 8.95066926 9.17148775 8.98607716 9.19687670 9.52288576

0.1 6.2 1 −1 8.96763224 8.95931998 9.18190038 9.00877818 9.21615941 9.54160066

7 10.1235168 10.1125894 10.3633504 10.1642802 10.39941256 10.76698017

8 11.5682639 11.5539900 11.8399581 11.6083404 11.878192 12.2984277

0.1 6.2 1 −1 8.96763224 8.95931998 9.18190038 9.00877818 9.21615941 9.54160066

0.15 7.66402787 7.64828309 7.93848451 7.71063957 7.97732598 8.39192699

0.2 6.56452718 6.54371636 6.88156091 6.61657544 6.92309899 7.39738516
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sheet, shrinking sheet upper and lower branch solutions,
respectively. It is clear that from Fig. 7a, the temperature
profile increases as φ and γ increase. The combined ef-
fect of these parameters increases the thermal boundary-
layer thickness. The temperature increases as φ increases
and decreases as γ increases in the case of shrinking
sheet (upper and lower branch solutions [Fig. 7b, c]). It
can be seen that the presence of first-order slip (γ) con-
siderably decreases the temperature profile in case of
shrinking sheet lower branch solution compared to
upper branch solution.
The effects of δ and φ on temperature profile of

Au-water in case of stretching sheet, shrinking sheet
upper and lower branch solutions are elucidated in
Fig. 8a–c. It is noted that the temperature profile in-
creases with the increasing values of φ and |δ| for

stretching sheet (Fig. 8a). The temperature profile de-
creases with the increasing values of |δ| and increases
with the increase of φ in both upper and lower
branch solutions (Fig. 8b, c). It is observed that the
second-order slip parameter (|δ|) increases the ther-
mal boundary-layer thickness in the case of stretching
sheet and decreases the thickness of the thermal
boundary-layer in the case of shrinking sheet upper
and lower branch solutions.

Results for local skin-friction coefficient and reduced
Nusselt number

The values of −F
00
0ð Þ for different nanofluids are pre-

sented in Tables 5, 6 and 7 for stretching sheet, shrink-
ing sheet upper and lower branch solutions, respectively.

Table 9 Values of −θ′(0) for shrinking sheet with s = 2 and d = −1

ϕ Pr γ δ −θ′(0)

Au Ag Cu Al Al2O3 TiO2

0.1 6.2 1 −1U 8.94000235 8.90171270 9.11423777 8.86916843 9.09739368 9.42623649

−2U 8.94616160 8.91401373 9.12852713 8.89693791 9.12136061 9.44957677

−3U 8.94855242 8.91909851 9.13453448 8.90987130 9.13222539 9.46010186

0.1 6.2 1 −1U 8.94000235 8.90171270 9.11423777 8.86916843 9.09739368 9.42623649

2 8.94214951 8.90742644 9.12130754 8.88811143 9.11251719 9.44072796

3 8.94372350 8.91128391 9.12598796 8.68802101 8.90192631 9.22856981

0.1 6.2 1 −1U 8.94000235 8.90171270 9.11423777 8.86916843 9.09739368 9.42623649

7 10.0948131 10.0532790 10.2938502 10.0219901 10.2781938 10.6492582

8 11.5384374 11.4929308 11.76858011 11.4633546 11.7544989 12.1783283

0.1 6.2 1 −1U 8.94000235 8.90171270 9.11423777 8.86916843 9.09739368 9.42623649

0.15 7.64451675 7.60052168 7.87980673 7.55820025 7.85502622 8.27413557

0.2 6.54876634 6.50066644 6.82683043 6.44687288 6.79331037 7.27309052
UDenotes upper branch solutions

Table 10 Values of −θ′(0) for shrinking sheet with s = 2 and d = −1

ϕ Pr γ δ −θ′(0)

Au Ag Cu Al Al2O3 TiO2

0.1 6.2 1 −1L 8.60736217 8.59049482 8.81044994 8.61956121 8.83149871 9.15788685

−2L 8.62608298 8.60907041 8.82893122 8.63719619 8.84946087 9.17587696

−3L 8.64048070 8.62324859 8.84300832 8.65047682 8.86301863 9.18946312

0.1 6.2 1 −1L 8.60736217 8.59049482 8.81044994 8.61956121 8.83149871 9.15788685

2 8.65420733 8.63587484 8.85528708 8.66033358 8.87359737 9.20016328

3 8.68509934 8.66593785 8.88504809 8.89938679 9.121764781 9.44963886

0.1 6.2 1 −1L 8.60736217 8.59049482 8.81044994 8.61956121 8.83149871 9.15788685

7 9.76431791 9.74436674 9.99234718 9.77475466 10.01464203 10.38317866

8 11.2100172 11.1862653 11.46930691 11.21844264 11.49324104 11.91447074

0.1 6.2 1 −1L 8.60736217 8.59049482 8.81044994 8.61956121 8.83149871 9.15788685

0.15 7.30365859 7.28042086 7.56808496 7.31887513 7.59124819 8.00706347

0.2 6.20217481 6.17480694 6.51041063 6.22263870 6.53492338 7.01054907
LDenotes lower branch solutions
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On observation of these tables, it reveals that local skin-

friction coefficient −F
00
0ð Þ decreases with the increasing

values of γ and |δ| in stretching sheet case and it in-
creases with the above said parameters in shrinking
sheet case (both upper and lower branch). The increas-
ing values of φ decrease the local skin-friction coefficient

of Au, Ag and Cu nanofluids and increase the −F
00
0ð Þ

values of Al, Al2O3 and TiO2 nanofluids in stretching
sheet, and an opposite effect has been seen in shrinking
sheet case. The values of skin-friction coefficient are
higher for Al-water and lower for Au-water in stretching

sheet and in the case of shrinking sheet; the values of −F
00

0ð Þ are higher for Au-water and lower for Al-water com-
pared to other nanofluids.

The values of reduced Nusselt number −θ
0
0ð Þ are tab-

ulated in Tables 8, 9 and 10 for stretching sheet, shrink-
ing sheet upper and lower branch solutions, respectively.
It is clear from Table 8 that the reduced Nusselt number
decreases with the increasing values of γ, |δ| and φ, and
it increases as Pr increases in stretching sheet. In the
case of shrinking sheet (both upper and lower branch),
the reduced Nusselt number increases with γ, |δ| and Pr,
and it decreases with φ. The reduced Nusselt number
values are higher for TiO2-water and lower for Ag-water
in the stretching sheet and shrinking sheet lower branch
solution cases. TiO2-water has higher Nusselt number
and Al-water has lower Nusselt number in the case of
shrinking sheet upper branch solution.

Conclusions
An analysis has been carried out to study the heat trans-
fer characteristics of a water-based nanofluid over a
stretching/shrinking sheet with second-order slip flow
model. The basic boundary-layer non-linear partial dif-
ferential equations have been converted into a set of
non-linear ordinary differential equations by using scal-
ing transformations. An exact solution to the momen-
tum equation is obtained and the solution of energy
equation is obtained in terms of a hypergeometric func-
tion for different water-based nanofluids containing Au,
Ag, Cu, Al, Al2O3 and TiO2 nanoparticles, and the ana-
lytical solutions are verified by the solutions obtained by
the fourth-order Runge–Kutta with shooting method
and the following results are obtained:

� It is observed that there is only one physically
meaningful solution in the case of a stretching sheet
with suction, and this is not true for a stretching
sheet with injection or for a shrinking sheet. Dual
solutions are obtained in shrinking sheet beyond a
suction critical point which are classified as upper
and lower branch solutions. The presence of
nanoparticles decreases the suction critical point.

� Equation 17IV gives a unique solution for the
stretching sheet and upper branch solution for the
shrinking sheet. The lower branch solution is
obtained by either Eq. 17II or Eq. 17III which
depends on the choice of physical parameters.

� The velocity profile of the nanofluid decreases with
the increasing vales of first-order (γ) and second-
order slip (|δ|) parameters in stretching and shrink-
ing sheet lower branch solution cases (for large
values of η). The increasing values of first (γ) and
second-order slip parameters (|δ|) increases the vel-
ocity profile in cases of shrinking sheet upper and
lower branch solutions (for small values of η). The
increasing values of nanoparticle volume fraction de-
crease the velocity components in stretching sheet
and shrinking sheet lower branch solution and in-
crease the velocity profile in shrinking sheet lower
branch solution.

� The temperature profile of the nanofluid rises with
the increasing values of first-order and second-order
(|δ|) slip parameters in the stretching sheet case and
reduces with the above-said parameters in shrinking
sheet case. The increasing values of nanoparticle vol-
ume fraction parameter increase the temperature of
the nanofluid in both stretching and shrinking sheets.
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