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A quasi-analytical solution of homogeneous
extended surfaces heat diffusion equation
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Abstract

Background: In this study, a quasi-analytical solution for longitudinal fin and pin heat conduction problems is investigated.

Methods: The differential transform method, which is based on the Taylor series expansion, is adapted for the
development of the solution. The proposed differential transform solution uses a set of mathematical operations to
transform the heat conduction equation together with the fin profile in order to yield a closeform series of homogeneous
extended surface heat diffusion equation.

Results and conclusions: The application of the proposed differential transform method solution to longitudinal fins of
rectangular and triangular profiles and pins of cylindrical and conical profiles heat conduction problems showed an
excellent agreement on both fin temperature and efficiencies when compared to exact results. Therefore, the proposed
differential transform method can be useful for optimal design of practical extended surfaces with suitable profile for
temperature response.
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Background
Extended surfaces in the forms of longitudinal or radial
fins or spines with various cross sections are widely used
in industrial applications such as air-cooled craft en-
gines, cooling of computer processors and electrical
components, air-conditioning, refrigeration, heat ex-
changers, and solar collectors. These devices, which pro-
vide a considerable increase in the surface area for heat
transfer between a heated source and a cooler ambient
fluid, are most effective to enhance heat transfer between
a surface and an adjacent fluid (Kraus et al. 2001). In
designing extended surfaces, the first step consists of
assuming that the heat transfer is governed by a one-
dimensional homogeneous steady conduction along an ex-
tended surface and a uniform convection at the surface
area (Arauzo et al. 2005; Kang 2009; Brestovic et al. 2015).
Although an exact solution for this problem can be found
in the literature, it may be either difficult or not possible
to obtain when designing practical extended surfaces with
profile matching suitable geometry for temperature re-
sponse. Moreover, the exact solution of some problems

requires difficult manipulation of special functions such as
Bessel functions.
Several efficient analytical or quasi-analytical methods

have been developed over the past two decades to solve
linear and nonlinear problems in science and engineering
including the power series, the Adomian decomposition,
the homotopy, and the differential transformation me-
thods (Diez et al. 2009; Aziz and Bouaziz 2011; Torabi
and Zhang 2013; Hayat et al. 2016). In general, exact solu-
tions are mostly based on the tedious computation of
special functions (Kraus et al. 2001; Diez et al. 2009). The
power series method has been used by Arauzo et al. (2005)
to approximate the solution of the one-dimensional steady
heat conduction equation that governs the temperature
variation in annular fins of hyperbolic profile. This method
is a standard technique for solving linear ordinary differen-
tial equations with variable coefficients. The Adomian de-
composition method has been used by Arslanturk (2005)
and Bhowmik et al. (2013) to compute a closed-form solu-
tion for a straight convecting rectangular and hyperbolic
profile annular fin with temperature-dependent thermal
conductivity. This method represents the solution by an in-
finite series of the so-called Adomian polynomials and uses
an iterative method such as the Newton–Raphson for the
evaluation of the undetermined temperature at the fin tip.
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The homotopy method is a quasi-analytical solution for
solving nonlinear boundary value problem (Domairry and
Fazeli 2009; Hayat et al. 2017a). This method does not re-
quire the calculation of Adomian polynomials as required
for the Adomian decomposition method, but it requires an
initial approximation (Roy and Mallick 2016; Hayat et al.
2017b; Waqas et al. 2016). Inc (2008) used the homotopy
analysis method to evaluate the efficiency of straight fins
with temperature-dependent thermal conductivity and de-
termined the temperature distribution within the fin. The
results show that the homotopy analysis method presents
faster convergence and higher accuracy than the Adomian
decomposition method and the homotopy perturbation
method for nonlinear problems in science and engineering.
The differential transform method (DTM) is based on the
Taylor series expansion and constructs an analytical solu-
tion in the form of a polynomial. In general, the solution
necessitates an iterative method such as the Newton–
Raphson methods for the determination of the initial
temperature transform function value. Joneidi et al. (2009)
applied the differential transform method to predict
temperature and efficiency of convective straight fins with
temperature-dependent thermal conductivity. Their ob-
tained results compared to exact and numerical results
reveal that the differential transform method is an effective
and accurate method for analyzing extended surfaces’
nonlinear heat transfer problems. Kundu and Lee (2012)
determined the performance of different fin geometries by
analyzing heat transfer in rectangular, triangular, convex,
and exponential geometric longitudinal fins using the dif-
ferential transform method. These authors demonstrated
that the differential transform is precise and cost efficient
for analyzing nonlinear heat and mass transfer effects in
extended surfaces.
The literature presents several quasi-analytical methods

for analyzing heat transfer problems in extended surfaces.
The different quasi-analytical methods, which used an it-
erative method such as the Newton–Raphson for the
evaluation of an undetermined parameter, are applied
mostly for nonlinear problems. On the other hand, the
solution of linear problems is generally obtained as a par-
ticular case of nonlinear problems. The contribution of
the present work is to present close-form series solution
of the homogeneous extended surface heat diffusion equa-
tion using the differential transform method. This can be
a useful strategy in developing an analytical solution when
designing practical extended surfaces with suitable geom-
etry for temperature response. The proposed differential
transform solution uses a set of mathematical operations
to transform the heat conduction equation together with
the fin profile in order to yield a close-form series of
homogeneous extended surface heat diffusion equation
which avoid using an iterative method. The homogeneous
extended surfaces in the forms of longitudinal fins of

rectangular and triangular profiles and pins of cylindrical
and conical profiles are attached to a primary surface at
constant temperature heat losses by convection to the sur-
rounding medium and where the heat loss from the tip of
the extended surfaces is assumed to be negligible. The
temperature distribution and efficiency within extended
surfaces are analyzed and compared against exact results.

Methods
Problem description
The problem under consideration consists of four
homogeneous extended surfaces, longitudinal fins of
rectangular and triangular profiles and pins of cylindrical
and conical profiles as shown in Fig. 1. These extended
surfaces are attached to a primary surface at constant
temperature heat losses by convection to the sur-
rounding medium and where the heat loss from the tip
is assumed to be negligible.
For most engineering problems, the extended surface

temperature must be maintained lower than the sur-
rounding air to be cooled. Therefore, the extended
surface which is attached to a primary surface at con-
stant temperature Tb loses heat by convection to the sur-
rounding medium of temperature T∞. In this work, the
heat loss from the tip of the extended surface is assumed
to be negligible and the heat conduction is assumed to
occur solely in the longitudinal direction. The governing
of the conduction equations for this problem is well de-
scribed in the literature (Kraus et al. 2001; Yaghoobi and
Torabi 2011; Kundu and Lee 2012). For the problem
under consideration, the governing equation for 0 ≤ x ≤
b and boundary conditions can be written as

d
dx

kc p
ξ dT
dx

� �
−ξ p ξ−1ð Þ h T xð Þ−T∞½ � ¼ 0 ð1Þ

Tcx¼b ¼ Tb; A xð Þ dT
dx
c
x¼0

¼ 0 ð2Þ

where kc is the constant thermal conductivity, h is the
constant convective coefficient of the cooled air, A is the
fin section area, the parameter ξ = 1 for longitudinal fins
and ξ = 2 for pins and the extended surfaces profile, p(x),
is given by (Kraus et al. 2001)

p xð Þ ¼

w
2

x
b

0
@

1
A

1−2γð Þ 1−γð Þ

; if longitudinal

w
2

x
b

0
@

1
A

1−2γð Þ= 2−γð Þ

; if pins

8>>>>>>><
>>>>>>>:

ð3Þ
with γ = 1/2 for fins of rectangular and cylindrical profile
and γ = 0 for triangular profile and γ = − 1 for pins or
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conical profile. Let us consider the following dimension-
less temperature and coordinate, respectively, as

θ ¼ T xð Þ−T∞

Tb−T∞
; ζ ¼ x

b
; ð4Þ

The governing Eqs. (1) for and (2) can be written in
dimensionless form as

d
dζ

pξ
dθ
dζ

� �
−
ξhb2

kc
p ξ−1ð Þθ ¼ 0; 0≤ζ≤1 ð5Þ

θ ζ ¼ 1ð Þ ¼ 1; A ζð Þ dθ
dζ

ζ ¼ 0ð Þ ¼ 0 ð6Þ

Equation (6) can be further written as

p
d2θ

dζ2
þ ξ

dpξ

dζ
dθ
dζ

−
ξhb2

kc
θ ¼ 0 ð7Þ

Differential transform operations
The differential transform method is generally used to
derive a solution for a wide class of linear and nonlinear
ordinary differential equations in the form of Taylor
series (Chen and Ho, 1999; Hassan 2002). Consider an
analytical function f(x) defined in the domain D. The de-
velopment of the function f(x) around a point x = xi in
Taylor series can be represented as (Jang et al. 2010;
Chen and Ju 2004)

f xð Þ ¼
X∞
k¼0

x−xið Þk
k!

dkf xð Þ
dxk

� �
x¼xi

ð8Þ

It should be noted that for the development around
point x = 0, Eq. (9) leads to Maclaurin series. The

function F(k) which represents the transform form of
the original function f(x) can be expressed by the following
relation (Jang et al. 2010; Chen and Ju 2004)

F kð Þ ¼ Hð Þk
k!

dkf xð Þ
dxk

� �
x¼xi

; k ¼ 0; 1;⋯;∞ ð9Þ

where H is the space horizon of interest. Considering
that the space horizon is H = 1, the transform function
F(k) is related to f(x) by the differential inverse transform
(Hassan 2002; Chen and Ju 2004)

f xð Þ ¼
X∞
k¼0

x−xið ÞkF kð Þ ð10Þ

If we consider that f(x) is developed in the Taylor
series around point x = 0, the different operators be-
tween f(x) and the transform function F(k) of Table 1
can be derived (Hassan 2002; Joneidi et al. 2009;

Fig. 1 Sketch diagram of longitudinal fins of rectangular (a) and triangular profile (b) and pins of cylindrical (c) and conical profile (d)

Table 1 One-dimensional DTM fundamental operations

Functions Transform functions

f(x)= F(k)

af1(x) + bf2(x) F(k) = aF1(k) + bF2(k)
df
dx F(k) = (k + 1)F(k + 1)
d2 f
dx2

F(k) = (k + 1)(k + 2)F(k + 2)

xn F kð Þ ¼ δ k−nð Þ ¼ 1 si k ¼ n

0 si k≠n

�

exp(λx) F kð Þ ¼ λk
k!

f1(x)f2(x) F kð Þ ¼ Pk
l¼0

F1 lð ÞF2 k−lð Þ

f1(x)f2(x)f3(x) F kð Þ ¼ Pk
h¼0

Ph
l¼0

F1 lð ÞF2 h−lð ÞF3 k−hð Þ

Lemoubou and Kamdem International Journal of Mechanical and Materials Engineering  (2017) 12:17 Page 3 of 9



Yaghoobi and Torabi 2011). The key feature of the DTM
is applied by using the operator of Table 1 to the ordin-
ary differential equation of heat conduction through the
extended surfaces. An easy way to derive the differential
transform of Eqs. (6) and (7) is to find the differential
transform of each term.
Considering Table 1 operators, the differential trans-

form of Eq. (7) for longitudinal fins and pins gives,
respectively

ðk þ 1Þ k þ 2ð ÞP kð ÞΘ k þ 2ð Þ þ
Xk
l¼0

P lð ÞΘ lð Þ k−l þ 2ð Þ

� k−l þ 1ð ÞΘ k−l þ 2ð Þ− h
kc

Θ kð Þ ¼ 0

ð11Þ

2
Xk
l¼0

l þ 1ð Þ k−l þ 1ð ÞP l þ 1ð ÞΘ k−l þ 1ð Þ

þ
Xk
h¼0

Xh
l¼0

k−hþ 1ð Þ k−hþ 2ð ÞP lð ÞP h−lð Þ Θ k−hþ 2ð Þ

−
2hb2

kc
Θ kð Þ ¼ 0

ð12Þ

Taking the differential transform of the boundary con-
ditions, Eq. (5), it can be obtained, respectively

Θ 1ð Þ ¼ 0 ð13Þ
X∞
k¼0

Θ kð Þ ¼ 1; ð14Þ

The transform condition (13) is applied only for
rectangular and cylindrical fins whereas (14) is adapted
for all the geometries.

Results and discussion
For stationary heat conduction through fins and pins
with a dry surface and constant thermal conductivity
cooled by air of constant heat transfer coefficient, exact
analytical solution using a standard method of ordinary
differential equations can be found in the literature
(Kraus, et al., 2001; Kundu and Lee 2012). In the present
work, the DTM is considered as alternative for obtaining
analytical solution and the predictions are compared
to the results from the standard method of ordinary
differential equations.

Longitudinal fin with rectangular profile
For the first problem, the DTM is applied to a longitu-
dinal fin of rectangular profile cooled by convection to
the surrounding medium and with negligible heat loss
from the tip. The terminology of this fin is described in

Fig. 1a, and the profile function is constant. The trans-
form function of the profile is then

P lð Þ ¼ w
2
δ lð Þ ð15Þ

The temperature transform function is reduced to

Θ k þ 2ð Þ ¼ m2Θ kð Þ
k þ 1ð Þ k þ 2ð Þ ð16Þ

with m ¼ 2h=kc wð Þ12. Considering Eqs. (13) and (16), the
temperature transform function can be written in a gen-
eralized form as

Θ 2kð Þ ¼ m2k

2kð Þ!Θ 0ð Þ; k ¼ 1; 2; 3;…: ð17Þ

Θ 2k þ 1ð Þ ¼ 0; k ¼ 0; 1; 2; 3;…: ð18Þ
The discrete value Θ(0) is obtained by applying the

second boundary condition Eq. (14) as

Θ 0ð Þ ¼ 1=
Xn
k¼0

m2k

2kð Þ!
ð19Þ

Considering Eq. (10), the temperature distribution for
the fin of rectangular profile can then be expressed as

θ ζð Þ ¼
Xn
k¼0

mζð Þ2k
2kð Þ! =

Xn
k¼0

m2k

2kð Þ! ð20Þ

The temperature distribution given by Eq. (20) is com-
puted and compared to the exact solution obtained
using the standard method of ordinary differential equa-
tions (Kraus et al. 2001). The results were truncated to
four decimal places since this precision is generally
sufficient for engineering problems. The relative errors
between the DTM and the exact results for the
temperature are presented in Table 2. As expected, the
DTM converges towards the exact solution as the order
of the approximations is increasing. For both low and
high value of the thermal length characteristic param-
eter, the DTM convergence in four significant figures at
relatively low approximation orders: the first fourth
terms of the Taylor series is sufficient.
The dimensionless temperature within the longitu-

dinal fin of rectangular profile versus the dimensionless
length for the different thermal length characteristic

parameter mb ¼ 2h=kc wð Þ12 b can be seen in Fig. 2. Ex-
cellent agreement can be observed between DTM and
the exact results. It is also noticed that the temperature
increases with the height of the rectangular fin for a
fixed value of the thermal length and tends to the unit
when this fin characteristic is equal to one. For a di-
mensionless length, the magnitude of temperature
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decreases with increasing thermal length characteristic
parameter. It should be noted that the thermal length
characteristic parameter increases with the convection
coefficient and decreases with conduction coefficient
and fin thickness. In such case, the use of the
longitudinal fin of rectangular profile will be optimal
for a low convection coefficient of the cooling fluid or
if the fin is designed with high thermal conductivity
and thickness.
From the Fourier law, the heat transfer rate dissipated

from the longitudinal fin to a neighboring fluid can be
expressed in a dimensionless variable as

q ζð Þ ¼ kcA
dθ ζð Þ
dζ

ð21Þ

with the fin cross-sectional area A = wL where δ and L
are the fin thickness and length, respectively.

Considering the derivative of Eq. (20), the heat transfer
rate from Eq. (21) becomes

q ζð Þ ¼ kcwLm
2 Tb−T∞ð Þ

Xn
k¼1

m2kζ2k−1

2k−1ð Þ! =
Xn
k¼0

m2k

2kð Þ!
ð22Þ

The fin efficiency can be evaluated as the ratio of heat
transfer rate at the base of the fin to its ideal transfer
rate if the entire fin were at the same temperature as its
base

η ¼ q ζ ¼ 1ð Þ
qideal

¼
Xn
k¼1

m2k

2k−1ð Þ!
�Xn

k¼0

m2k

2kð Þ! ð23Þ

Figure 3 presents the behavior of a longitudinal fin of
rectangular profile efficiency against thermal length
characteristic parameter. Excellent agreement between
the DTM efficiency prediction and exact results is ob-
served. From Fig. 3, it is noted the decrease of efficiency
is in accordance with increasing thermal length. This
means that the performance of the rectangular fin de-
creases when the fin has high thickness and conduction
coefficient or low convection coefficient of the cooling
fluid.

Longitudinal fin of triangular profile
The second test problem considers longitudinal fins of
triangular profile cooled by convection to the surround-
ing medium and with negligible heat loss from its tip.
For this fin, shown in Fig. 1b, γ = 0 and the profile trans-
form function gives

P lð Þ ¼ w
2
δ l−1ð Þ ð24Þ

The temperature transform function for the longitu-
dinal fin given by Eq. (11) reduces to

Fig. 2 Temperature evolution for a rectangular fin Fig. 3 Efficiency for a rectangular fin

Table 2 Comparison of the DTM and exact results for different
approximations order

mb = 0.6 mb = 1.4

Exact DTM Exact DTM

ζ n = 1 2 n = 1 2 3 4

0.0 0.8436 0.0039 0 0.4649 0.0401 0.0024 0.0001 0

0.1 0.8451 0.0039 0 0.4695 0.0405 0.0024 0.0001 0

0.2 0.8496 0.0039 0 0.4833 0.0416 0.0024 0.0001 0

0.3 0.8573 0.0039 0 0.5065 0.0431 0.0026 0.0001 0

0.4 0.8680 0.0039 0 0.5397 0.0445 0.0027 0.0001 0

0.5 0.8818 0.0038 0 0.5836 0.0452 0.0029 0.0001 0

0.6 0.8988 0.0036 0 0.6388 0.0444 0.0030 0.0001 0

0.7 0.9191 0.0032 0 0.7066 0.0409 0.0030 0.0001 0

0.8 0.9426 0.0025 0 0.7883 0.0335 0.0027 0.0001 0

0.9 0.9696 0.0015 0 0.8855 0.0205 0.0018 0.0001 0

1.0 1.0000 0.0000 0 1.0000 0.0000 0.0000 0.0000 0
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Θ k þ 1ð Þ ¼ 1
k þ 1

Xk
l¼0

δ l−1ð Þ k−l þ 1ð Þ k−l þ 2ð Þ

Θ k−l þ 2ð Þ þ m2

k þ 1
Θ kð Þ

ð25Þ
with m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 h=kc w
p

. The temperature transform func-
tion can be generalized as

Θ kð Þ ¼ Θ 0ð Þm2k= k!ð Þ2; k ¼ 1; 2; 3;…: ð26Þ
From the boundary condition, Eq. (14), the value of

the constant Θ(0) is given by

Θ 0ð Þ ¼ 1

�Xn
k¼0

m2k

k!ð Þ2 ð27Þ

Therefore, the temperature distribution for a longitu-
dinal fin of triangular profile using Eq. (10) can be
expressed as

θ ζð Þ ¼
Xn
k¼0

m2kζk

k!ð Þ2
�Xn

k¼0

m2k

k!ð Þ2 ð28Þ

The temperature computed using Eq. (28) is compared
to the exact solutions from the standard method of or-
dinary differential equations. The DTM solutions con-
verge to the exact solutions for the five terms of the
Taylor series, and for all the significant figures of the
exact solution. On Fig. 4, it can be seen that the evolu-
tion of the dimensionless temperature of the longitu-
dinal fin of triangular profile with the dimensionless
length increased as thermal length characteristic param-
eter increased. The decrease of the fin temperature with
the thermal length characteristic parameter indicates
that the loss of heat fin is more significant for longitu-
dinal fins of triangular profiles with high thickness and
conduction coefficient or for low convection coefficient
of the cooling fluid.

Considering the heat transfer rate dissipated from the
fin to a neighboring fluid, Eq. (21), the heat transfer rate
dissipated from the longitudinal fin of triangular profile
having cross-sectional area A =wL is

q ζð Þ ¼ kcwLm
2 Tb−T∞ð Þ

Xn
k¼1

m2kζk−1

k−1ð Þ!k!
�Xn

k¼0

m2k

k!ð Þ2
ð29Þ

Consequently, the fin efficiency can be expressed as

η ¼ q ζ ¼ 1ð Þ
2hL Tb−T∞ð Þ ¼

Xn
k¼1

m2k

k−1ð Þ!k!
�Xn

k¼0

m2k

k!ð Þ2 ð30Þ

The decrease of the longitudinal fin of triangular pro-
file efficiency with increased thermal length characteris-
tic parameter can be seen in Fig. 5. An excellent
agreement between present DTM and exact results is
achieved.

Pin of cylindrical profile
A pin of cylindrical profile with the heat loss from the
tip which is assumed to be negligible and cooled by con-
vection to the surrounding medium is now considered.
Since for this pin, the profile function has the same ex-
pression than that for longitudinal fin of rectangular
profile, the profile transform function is given by Eq.
(15). It can also be deduced from Eq. (12) that the
temperature transform function is identical to Eq. (15)

where the parameter m is now given by m ¼ 4h=kc dð Þ12 .
Therefore, the temperature distribution through the pin
of cylindrical profile is given by Eq. (20). The fin cross-
sectional area of this pin is A = πd2/4 and therefore the
heat transfer rate dissipated from the pin of cylindrical
profile to the surrounding fluid is

Fig. 4 Temperature evolution for a triangular fin Fig. 5 Efficiency for a triangular fin
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q ζð Þ ¼ πd2 kcm
2 Tb−T∞ð Þ

Xn
k¼1

m2kζ2k−1

2k−1ð Þ!
�

4
Xn
k¼0

m2k

2kð Þ!
ð31Þ

The efficiency of this fin can be evaluated as

η ¼ q ζ ¼ 1ð Þ
πdh Tb−T∞ð Þ ¼

Xn
k¼1

m2k

2k−1ð Þ!
�Xn

k¼0

m2k

2kð Þ! ð32Þ

Figures 6 and 7 compare the pins’ dimensionless
temperature efficiency predicted using DTM and exact re-
sults. An excellent agreement between the two methods is
observed for DTM with four terms of the Taylor series. It
can be seen in Fig. 6 that the dimensionless temperature
increases with increasing pin dimensionless length, while
the pin efficiency decreased with increasing thermal
length characteristic parameter. This indicates that a pin
of cylindrical profile dissipates more heat transfer for high
values of the pin diameter and thermal conductivity or for
low convection coefficient of the cooling fluid.

Pin of conical profile
The last problem deals with a pin of conical profile
cooled by convection to the surrounding medium cooled
and where the heat loss from the tip is assumed to be
negligible. For this pin, shown in Fig. 1d, the profile
transform function is expressed as

P lð Þ ¼ w
2
δ l−1ð Þ ð33Þ

For the general discrete expression for pin, Eq. (12) is
reduced to

Θ k þ 1ð Þ ¼ 1
2 k þ 1ð Þ

�Xk
l¼0

δ l−1ð Þ k−l þ 1ð Þ k−l þ 2ð Þ

Θ k−l þ 2ð Þ−2m2Θ kð Þ
	

ð34Þ

with m ¼ 4h=kc wð Þ12 . The temperature transform func-
tion can be generalized as

Θ kð Þ ¼ 2k m2k

k! k þ 1ð Þ! Θ 0ð Þ; k ¼ 1; 2… ð35Þ

Application of boundary transform Eq. (14) gives

Θ 0ð Þ ¼ 1=
Xn
k¼0

2k m2k

k! k þ 1ð Þ! ð36Þ

The temperature distribution within the pin is ob-
tained by substituting Eqs. (35) and (36) in Eq. (10) as

θ ζð Þ ¼
Xn
k¼0

2k m2k

k! k þ 1ð Þ! ζ
k
�Xn

k¼0

2k m2k

k! k þ 1ð Þ! ð37Þ

Figure 8 shows the variation of the dimensionless
temperature according to the pin of the conical profile
dimensionless length. Excellent agreement between
present DTM using five terms of the Taylor series terms
and exact results is observed. It can be seen that the
temperature increases with increasing pin length, while

Fig. 6 Temperature evolution for a cylindrical fin

Fig. 7 Efficiency for a cylindrical fin

Fig. 8 Temperature evolution for a conical pin
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it decreases with increasing thermal length characteristic
parameter.
The heat transfer dissipated by the pin having cross-

sectional area A = πw2/4 can be evaluated as

qb ¼ kc
πw2

4
m2 Tb−T∞ð Þ

Xn
k¼1

2k m2k−2

k−1ð Þ! k þ 1ð Þ!
�Xn

k¼0

2k m2k

k! k þ 1ð Þ!
ð38Þ

The pin of conical profile efficiency is given by

η ¼ q ζ ¼ 1ð Þ
πwh Tb−T∞ð Þ=2¼

Xn
k¼1

2kþ1 m2k−2

k−1ð Þ! k þ 1ð Þ!
�Xn

k¼0

2k m2k

k! k þ 1ð Þ!
ð39Þ

The decrease of pin efficiency with thermal length
characteristic parameter is illustrated in Fig. 9, where an
excellent agreement between present DTM and exact re-
sults is observed. The variation of temperature and effi-
ciencies with the thermal length characteristic parameter
confirms that the performance of pins of conical profile
will be optimal for the combination of high conduction
coefficient and fin thickness or for low convection coeffi-
cient of the cooling fluid.

Conclusions
A differential transform method to analyze stationary
heat conduction through homogeneous extended sur-
faces with negligible heat loss from the tip has been pre-
sented. The major conclusion of this work is that for
stationary heat conduction through extended surfaces,
the DTM solution can be obtained in a closed series so-
lution which does not necessitate an iterative method
such as the Newton–Raphson methods for the deter-
mination of the initial value of temperature transform
function. The proposed method is shown to converge
with a few Taylor series for both low and high values of
the thermal length characteristic parameter. Application

of the present DTM solution to longitudinal fins of rect-
angular and triangular profiles and pins of cylindrical
and conical profiles show an excellent agreement with
exact results. For all cases studied, the magnitude of
temperature decreases with increasing thermal length
characteristic parameter. This indicates that the loss of
heat from extended surfaces is more significant for low
convection coefficient of the cooling fluid than that for
extended surfaces with high thickness and conduction
coefficient.

Nomenclature
A fin section area, m2

b height of the fin, m
h heat convectivity coefficient W ∙m−2 ∙ K−1

kc thermal conductivity heat coefficient, W ∙m−1 ∙ K−1

q heat flux, W/m2

T temperature, K
x coordinate, m
p profile function
P profile transform function
W thickness of the fin, m
Greek symbols
β dimensionless temperature
θ dimensionless temperature
Θ dimensionless temperature transform function
η fin efficiency
ζ dimensionless coordinate
Subscripts
b fin base
i ideal parameter
∞ ambient environment
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