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Abstract 

Machine learning-driven automated replication micrographs analysis makes possible rapid and unbiased dam-
age assessment of in-service steel components. Although micrographs captured by scanning electron microscopy 
(SEM) have been analyzed at depth using machine learning, there is no literature available on the technique being 
attempted on optical replication micrographs. This paper presents a machine-learning approach to segment 
and quantify carbide precipitates in thermally exposed HP40-Nb stainless-steel microstructures from batches of low-
resolution optical images obtained by replication metallography. A dataset of nine micrographs was used to develop 
a random forest classification model to segment precipitates within the matrix (intragranular) and at grain bounda-
ries (intergranular). The micrographs were preprocessed using background subtraction, denoising, and sharpen-
ing to improve quality. The method achieves high segmentation accuracy (91% intergranular, 97% intragranular) 
compared to human expert classification. Furthermore, segmented micrographs were quantified to obtain carbide 
size, shape, and density distribution. The correlations in the quantified data aligned with expected carbide evolution 
mechanisms. Results from this study are promising but necessitate validation of the method on a larger dataset rep-
resentative of evolution of thermal degradation in steel, given that characterization of the evolution of microstructure 
components, such as precipitates, applies to broad applications across diverse alloy systems, particularly in extreme 
service.
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Introduction
Microscopy is commonly used to record high-magnifica-
tion images and a planar view of features of a material’s 
microstructure. Typically, alloy samples are polished, 

etched, and imaged using optical, scanning electron 
(SEM) or transmission electron microscopes (TEM) in 
a laboratory setting to obtain microstructural images, 
called micrographs. In the case of metals, metallography 
techniques are used to obtain and analyze micrographs to 
develop an overall sense of the microstructural features, 
including precipitate shape and size distribution, grain 
sizes, and defects, such as voids and cracks. These fea-
tures represent important material properties and behav-
ior, such as strength and ductility.

Replication metallography is a specialized nonde-
structive technique for obtaining in  situ micrographs in 
industrial environments (Marder 1989). The ability to 
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generate micrographs without part removal or modifica-
tion is crucial to the process industry, where the length of 
maintenance downtime poses significant financial conse-
quences. Replication micrographs have been convention-
ally used to assess corrosion, creep damage, and crack 
formation in metals subjected to high temperature–pres-
sure conditions (Jana 1995). Replicas are created on-site 
and imaged with an optical microscope for subsequent 
evaluation. To prepare a replica, the material surface is 
cleared of any corrosion and oxidation products, pol-
ished, and etched before the application of a polymeric 
film that captures a microstructural stamp. The poly-
meric film is then removed and secured onto a glass slide 
before being imaged by an optical microscope for subse-
quent evaluation (E1351-01 2020). Features seen in opti-
cal micrographs are a product of depth contrast created 
by etching, which are captured by polymer casts as height 
contours. The lower reflectivity of polymer surfaces along 
with inversion of depth features leads to a loss of contrast 
in optical images taken from replicas. This results in the 
addition of noise/artifacts and an overall reduction in the 
contrast and resolution of feature boundaries, as noted in 
the ASTM E1351-01 standard (E1351-01 2020). There-
fore, it is harder to distinguish between precipitates, 
grain boundaries, and defects such as micro voids and 
cracks in optical images of replicas.

Material science experts usually evaluate the micro-
graphs collected from the field to assess microstructural 
evolution, damage, and defects incurred in operation. 
However, such manual evaluations are laborious, prone 
to subjectivity, and require significant expertise, factors 
that can introduce uncertainty and bias into the analy-
sis (Azimi et al. 2018). Martin et al. (2022) reported the 
industry standard methods for replica microstructure 
quantification to be (i) interpolation from previous analy-
sis of similar microstructures and (ii) point counting esti-
mation where an arbitrary number of equidistant points 
is plotted on a micrograph and the phase area fractions 
are calculated by the fraction of points falling in each 
phase.

The development of computer vision techniques has 
made microstructure analysis quantitative, repeatable, 
and consistent. Microstructures are seen as matrices of 
gray value pixel data that can be subsequently manipu-
lated and quantified in a traceable manner. Once labeled, 
the grayscale values are used to train supervised classi-
fication models and segment microstructures according 
to the features labeled in the training data (Holm et  al. 
2020). Numerous studies have demonstrated the capabil-
ity of machine learning (ML) models to correctly iden-
tify key microstructural features in micrographs, such as 
grain sizes, precipitates, texture, and defects (Holm et al. 
2020; Perera et al. 2021; Baskaran et al. 2020). While deep 

learning methods such as convolutional neural networks 
(CNNs) are more robust for computer vision applications 
(Kordijazi et  al. 2021), they are also relatively slower to 
train and execute and carry significant computational 
costs. DeCost et  al. (2019) applied a pixel-wise CNN to 
segment a labeled open-source steel microstructure data-
set obtained using scanning electron microscopy (SEM). 
They achieved an average precision of 0.96 and a sen-
sitivity of 0.92 for classifying intergranular networked 
carbides, albeit their model had a higher rate of misclas-
sification for damaged networked carbides. On the other 
hand, machine learning (ML) methods such as random 
forests and support vector machines (Shmilovici 2005) 
are less complex yet provide comparable results when 
the dataset is small, and the microstructures have distin-
guishable edges between the features being segmented 
(Lai et al. 2019).

Although SEM images are preferred for automated seg-
mentation due to their clarity, high resolution, and con-
trast, Bulgarevich et  al. (2018) demonstrated the ability 
of a supervised random forest model to segment the dif-
ferent phases found within a typical steel microstructure 
from optical micrographs. Papa et  al. (2013) compared 
the performance of the support vector machine, opti-
mum-pat forest (OPF), and Bayesian models to identify 
carbon-rich precipitates in optical images obtained from 
service-exposed industrial cast iron samples and got the 
highest universal image quality index of 0.85 for the OPF 
model. However, replication micrographs are lower in 
quality than those captured directly on an optical micro-
scope due to the increased presence of artifacts, back-
ground hue that affects contrast, blur/low resolution, and 
excessive noise (Jana 1995). To the best of our knowledge, 
a ML-based segmentation and quantification approach to 
analyze microstructure obtained by replication has not 
been done.

In materials science, the distribution, morphology, ori-
entation, and composition of microstructural features 
such as grains, precipitates, and defects are all relevant 
to material properties and are considered during micro-
structural analysis. Due to the limitations of replication 
metallography, the matrix and precipitates are the only 
features that can be discerned with confidence (Jana 
1995). Precipitates are one of the most important micro-
structural features of interest, as their morphology and 
distribution can impact material properties such as ten-
sile strength (Bonaccorsi et al. 2014). In the case of HP40-
Nb steel, a common material used in high-temperature 
applications in the oil and gas industry, the carbon-rich 
precipitates, known as carbides, and their transformation 
with exposure to extreme conditions such as high tem-
perature play a defining role in the service life of com-
ponents. Carbide transformations are used as markers 
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of material creep and help material scientists gauge the 
extent of the remaining design life of a component. Other 
alloy systems exhibit similar precipitate transformations 
when subjected to extreme environments. In nickel alloy 
263 steam turbines, thermal exposure leads to the forma-
tion of the η precipitate, and an increasing precipitate 
density correlates to a shorter creep life (Detrois et  al. 
2021). By efficiently quantifying and tracking the micro-
structural features such as precipitates, the adoption of 
a predictive inspection–maintenance–replacement phi-
losophy can be facilitated.

This study develops and implements a ML segmenta-
tion model to identify distinct carbide phases in low-
quality replication metallographs of service-exposed 
HP40-Nb steel and subsequently quantify the precipitate 
shape and size features. Image preprocessing methods 
are utilized to improve the image quality of the micro-
structures. Then, a random forest ML model is used to 
identify and segment the intragranular and boundary 
precipitates. Segmentation performance is benchmarked 
against manual labeling to gauge performance. The seg-
mented output images are then analyzed to obtain the 
carbide counts, density, shape, and size distribution for 
every carbide instance identified via segmentation. The 
entire process is automated and consolidated for batch 
image processing, simplifying the workflow, and increas-
ing the repeatability of results, compared to manual rep-
lication microstructure analysis. By gaining rapid insights 
into the microstructural evolution process under differ-
ent service conditions, we can optimize maintenance 
strategies, anticipate potential failures, and proactively 
plan for component replacements across a wide range of 
scenarios and diverse industrial sectors.

Methods
This section details the methodology employed to obtain 
and preprocess the microstructural images for develop-
ing a ML model and to identify and quantify the presence 
of the carbides within micrographs.

Materials and data description
Microstructures of nine HP40-Nb stainless steel sam-
ples with distinct thermal histories were replicated 
and imaged using optical microscopy. One parent 
microstructure image was obtained for each sample at 
50 × magnification resulting in 1306 × 623 pixels. The 
resultant measurement ratio for all images was 0.64 µm/
pixel.

The microstructure of an HP40-Nb steel contains two 
morphological distributions of carbide precipitates: (i) 
large intergranular (boundary) precipitates along the 
grain boundaries (interface between two or more crys-
tallites that a metal is composed of ) and (ii) relatively 

smaller intragranular precipitates within the matrix 
(continuous, base phase present in the material) (Vaché 
et al. 2020). Figure 1a shows the two carbide types labeled 
on an optical image of a HP40-Nb replica microstruc-
ture. The distribution of precipitates depends on carbide 
transformations that occur as the material incurs damage 
under service conditions. After a short duration of expo-
sure to high-temperature service conditions, the HP40-
Nb microstructure shows an extensive, thinly distributed 
carbide network along the grain boundaries, while the 
precipitates within the matrix are expected to be few 
and small (Shi and Lippold 2008). After extensive ther-
mal exposure, the carbide network breaks down, result-
ing in disconnected, thicker precipitates on the grain 
boundaries and the appearance of more intragranular 
precipitates that eventually agglomerate and grow (Shi 
and Lippold 2008). The precipitates are easier to observe 
in SEM micrographs since a better magnification and a 
clearer image can be produced. To visualize the complex-
ity of identifying precipitates in a replication micrograph 
as compared to an SEM micrograph, an SEM micrograph 
obtained from an ex-service HP40-Nb steel exhibiting 
both the intergranular (grain boundary) and intragranu-
lar (within the matrix) carbides is shown in Fig. 1b.

Image preprocessing
ImageJ (Schindelin et  al. 2012), an open-source image 
processing software, was used to preprocess the raw 
micrographs. The original images were in an RGB for-
mat and had a blue/green hue due to the choice of rep-
lica material and the lighting conditions during imaging. 
Since the hue is inconsequential to the microstructure, all 
the images were converted to an 8-bit grayscale format to 
save storage and processing time.

The images contained a significant pixel intensity gra-
dient in the background, which was an artifact of rep-
lication imaging and unrelated to the microstructure. 
Therefore, it was necessary to remove the background 
gradient and ensure that any variation seen in pixel inten-
sities was due to microstructural features. Background 
subtraction was performed using the rolling ball method 
(Sternberg 1983), which creates a topographical map 
out of the pixel intensities and rolls a ball of a defined 
pixel radius over it, picking any spatial variations in the 
grayscale values and subtracting them from the original 
images. Figure  2 shows (a) an image before the back-
ground removal, (b) the background gradient removed 
from the image, and (c) the image after the background 
removal.

Due to the nature of replication and optical imaging, 
significant noise was observed in the images that could 
negatively affect the performance of an ML segmenta-
tion model. The images were denoised (Fig. 2d) using the 
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nonlocal means method (Buades et al. 2011), which reg-
isters the pixel intensities across the image and compares 
neighbors of similar pixels to identify and subtract noise. 
The denoising also blurs object boundaries which then 
need to be restored. The image was sharpened (Fig.  2e) 
using the unsharp mask method that applies a low-pass 
filter on the pixel intensities, creating a secondary image 
that captures the blur from the parent image (Polesel 
et  al. 2000). This blur is subtracted from the original 
image, giving a sharpened output. Lastly, the contrast was 
enhanced (Fig. 2f ) using normalized contrast stretching, 

which normalizes the pixel values in the image between 0 
and 255, utilizing the full range of pixel intensities avail-
able (Jain 1988).

Data preparation, ML modeling, and implementation
While numerous ML models such as support vector 
machine (Shmilovici 2005), k-nearest neighbors (Guo 
et  al. 2003), and voted perceptron have been used for 
pixel classification problems, the random forest (RF) 
method was more suited to the carbide identification 
study due to its ability to handle an input comprised of 

Fig. 1 Distribution of intergranular (boundary) and intragranular carbide phases in a an optical image of an aged HP40-Nb replication 
microstructure and b aged HP40-Nb SEM micrograph
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a large number of features for small datasets. A low car-
bide-to-matrix ratio in the micrographs results in class-
imbalanced data. This is partially handled by random 
forests, an ensemble method in which each tree is trained 
independently, minimizing the effect of trees that may be 
biased toward the majority class. Figure 3a shows a sche-
matic layout of an RF ensemble with n decision trees, 
while Fig.  3b shows the overall process workflow used 
in this study, including data split and ML. RF consists 

of multiple decision trees where the data used to train 
each decision tree is randomly sampled from the training 
labels using the random bootstrapping process, which 
accommodates smaller training datasets by using statisti-
cal resampling.

Data split
Nine parent micrographs were each split into 4, result-
ing in a set of 36 images with 653 × 313 (1306/2 × 623/2) 

Fig. 2 Image preprocessing schematic diagram: a original gray scale, b rolling ball background, c post background removal, d nonlocal means 
denoising, e unsharp mask sharpening, and f contrast stretching

Fig. 3 Process flowchart detailing a a typical random forest with n decision trees and b the workflow from parent images to machine learning 
outputs
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pixels. One of the 9 parent images (4 out of 9 × 4 = 36 split 
images) was specified for training and validation. The 
remaining eight parent images (32 out of 36 split images) 
were specified as testing data.

• Data labeling for training and validation: The micro-
structural features present in the micrographs were 
divided into three classes: (i) intergranular (grain 
boundary) carbides, (ii) intragranular (peppered 
within the matrix) carbides, and (iii) the material 
matrix. The image specified for training and valida-
tion data was partially labeled by hand, in which 6017 
pixels were labeled as boundary carbides, 3261 pixels 
as intragranular carbides, and 21,124 pixels as matrix. 
A sample of labeled input prepared for training and 
validation is shown in Fig. 4a.

• Data labeling for testing: Additional data were labeled 
to test the RF model’s segmentation performance 
for both intergranular and intragranular carbides. 
The sizes of the labeled image sections were selected 
between the range of 50 × 50 and 150 × 150 pixels 
randomly (133 × 124 pixels for intergranular carbides 
and 115 × 87 pixels for intragranular carbides). Five 
sections for each carbide were then selected at ran-
dom locations from micrographs in the testing data-
set and labeled manually by material science experts.

• Feature generation and model training: Mathematical 
transformations, such as Laplacian, Gaussian, Hes-
sian, Sobel membrane projection, Lipschitz, Kuwa-
hara, and anisotropic diffusion, were applied to the 
dataset at multiple intensities to engineer a set of 132 
(default software settings) features. RF classifier ran-
domly chooses between the input feature stack and 
generates decision trees based on them. The default 
value of 100 decision trees was used. The output 
from all the decision trees for each pixel is then voted 
to classify the pixel as one of three defined classes, 
and a segmented version of the micrographs is pro-
duced as the output. The Trainable WEKA Segmen-
tation Toolbox in FIJI (Arganda-Carreras et al. 2016), 
an open-source image analysis software, was used for 
generating and training the RF model.

Validation
The model’s performance was validated in two ways: (i) 
by segmenting the training image and visually inspect-
ing the segmentation accuracy versus training labels, as 
shown in Fig.  4b, and (ii) by calculating the out-of-bag 
error (OOBE) where the leftover training data (i.e., 36% of 
training and validation labels) from the RF bootstrapping 

Fig. 4 a A sample image manually labeled for training (red, intergranular/boundary carbides; purple, intragranular/pepper carbides; green, matrix). 
b RF segmentation of training image used for visual validation
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process are compared to the ML segmentation to com-
pute validation error (Bulgarevich et al. 2018).

Testing
The model segmented all micrographs in the testing 
dataset. The segmented images were then threshold 
using RGB values for each class to obtain two separate 
slices per image, isolating the intergranular and intra-
granular carbides. To compute performance metrics for 
RF segmentation specific to each carbide class, the prob-
lem was reduced from a three-class classification to two 
binary-class classification problems. For intergranular 
carbides, the intragranular carbides and matrix together 
were considered as the negative class. For intragranular 
carbides, the intergranular carbides and matrix together 
were considered as the negative class.

Model performance (accuracy, precision, sensitivity, 
specificity, fallout, and F1 score) was evaluated by over-
laying the image sections labeled for testing onto the cor-
responding regions of the intergranular and intragranular 
slices produced from the segmented testing images. The 
overlay method is widely used to determine the perfor-
mance of an automated microstructure segmentation, 
as used by Stan et al. (2020) to test neural network seg-
mentation of (i) X-ray tomography microstructures of an 
Al-Zn alloy obtained during solidification with an aim 
to distinguish the solid and liquid phases and (ii) opti-
cal images of an Sn–Pb alloy exhibiting dendritic struc-
tures with an aim to identify the dendrites and track their 
coarsening. Hwang et  al. (2020) used the ground truth 
overlay to evaluate ML segmentation accuracy for identi-
fying individual material phases in multiphase composite 
microstructures.

Carbide quantification
The quantification was performed using the extended 
particle analyzer tool from the FIJI BioVoxxel plug-in 
(Brocher 2022). For both intergranular and intragranular 
carbides, the area fraction (%), average precipitate area 
(µm2), circularity, solidity, aspect ratio, and Feret diam-
eters (diameters along the principle X- and Y-axes, µm) 
for each identified carbide instance were calculated and 
saved as a spreadsheet. The mean morphological prop-
erties for both carbide classes were calculated for each 
micrograph and visualized. Correlations between quan-
tified parameters were also plotted. The methodology 
applied to calculate the parameters from applied thresh-
old image slices is available in FIJI/ImageJ documentation 
(Brocher 2022). The RF segmentation, thresholding, and 
quantification process were consolidated as a Java macro 
script in ImageJ, allowing for automated batch execution.

Results and discussion
The RF segmentation performance was evaluated, and 
the distribution of carbide properties within the data-
set was explored and compared to the expected carbide 
evolution of thermally exposed HP40-Nb steel.

ML segmentation
The preprocessed images were the input to the trained 
RF model. The model classified the micrographs as 
intergranular carbides, intragranular boundary car-
bides, and matrix. The segmentation output was then 
converted into separate slices for each carbide class 
against a null background (negative class). Exam-
ples of segmented micrograph slices showing labeled 
intragranular and intergranular carbides are shown in 
Fig. 5a and b, respectively. The performance of the RF 
classification model trained on a labeled micrograph 
was gauged using validation and testing data. The 
out-of-bag validation error yielded a high accuracy of 
98.7%.

Intergranular carbide segmentation
The ML segmentation performance analysis compared 
the carbide identification by the RF model with that of a 
group of domain experts. Figure  6 demonstrates one of 
the RF analyses conducted with respect to boundary car-
bides: (a) the original section, (b) the manually labeled 
image, (c) the original RF output, and (d) the intergran-
ular carbide slice of the RF-labeled image against a null 
background (the negative class, which consists of intra-
granular carbides plus matrix pixels).

The overlay of the expert and ML-labeled images in 
Fig.  6e shows that the RF model correctly identifies the 
larger boundary carbides but misidentifies some of the 
smaller broken-up boundary carbides as intragranular 
carbides, leading to false negatives (pixels belonging to 
the intergranular carbide class but incorrectly identified 
as matrix/intragranular carbide by the model) in regions 
with smaller boundary carbides. False positives (pixels 
belonging to the negative class but incorrectly identi-
fied as intergranular carbide) are seen at the boundaries 
of the carbides, indicating that the model identified a 
slightly larger region as a carbide than the actual carbide 
while maintaining geometry.

The model performance metrics for intergranular 
carbide segmentation are listed in Table  1. An overall 
accuracy of 91% is achieved. Since the area occupied by 
the negative class (matrix plus intragranular carbides) 
is large, accuracy alone becomes less conclusive met-
ric. Therefore, the positive prediction value (precision) 
of 80% and the true-positive rate (sensitivity) of 82% 
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are considered as better indicators of the segmentation 
performance.

Intragranular carbide segmentation
A separate ground truth analysis was conducted for 
intragranular carbides. Figure  7 compares the manu-
ally labeled and RF segmented sections: (a) the original 
section, (b) the expert labeled image, (c) the original RF 
output, and (d) the intragranular carbide slice of the RF-
labeled image against a null background (negative class/ 
intergranular carbides plus matrix pixels). The overlay 
of manual and RF labels in Fig.  7e shows that the ML 
model was able to correctly identify the majority of the 
precipitates in the segmented intragranular section. 

Misclassified false-positive pixels are seen entirely on 
the edges of intergranular carbides. The intragranu-
lar carbides misclassified by the model are smaller than 
those correctly identified and are similarly sized as the 
residual replication artifacts in the image. On the other 
hand, majority of false-negative misclassifications hap-
pen within a small pixel depth along the perimeters of 
correctly identified intragranular carbides. While the 
base geometries of the carbides are correctly identified, 
the misclassified pixels around the outer perimeter intro-
duce uncertainty in the overall carbide area by a small 
percentage.

The model performance metrics for intragranu-
lar carbide segmentation are also listed in Table 1. An 

Fig. 5 Carbide slices obtained from a segmented micrograph showing a intragranular and b intergranular precipitates against a null background
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overall accuracy of 97% is achieved. Similar to the case 
of intergranular carbides, the area occupied by the neg-
ative class (matrix plus intergranular carbides) is com-
paratively large; therefore, accuracy alone becomes a 
misleading metric. Hence, the positive prediction value 
(precision) of 92% and the true-positive rate (sensitiv-
ity) of 67% are considered as better indicators of the 
segmentation performance. The low sensitivity can be 
attributed to the smaller intragranular carbides below 
the minimum detection threshold of the model that 
were identified in the manual labels but entirely filtered 

in preprocessing and thus not identified by the RF 
model.

Carbide quantification
Conventional microstructural analysis focuses on pre-
cipitates that typically include size, morphology, area 
fraction, spatial distribution, and orientation. This work 
particularly focuses on the morphology of intergranular 
and intragranular carbides within the micrographs, as 
morphological evolution of carbide phases is of particu-
lar importance to thermally exposed microstructures. 

Fig. 6 Sample preparation for intergranular carbide segmentation performance analysis. a Preprocessed image section, b manual labels, c original 
RF segmentation results, d isolated boundary carbide slice, and e overlay of segmented intergranular carbides and manual labels

Table 1 Carbide identification performance metrics for intergranular and intragranular classes

Positive class — 
carbides

Accuracy Precision Specificity Fallout Sensitivity F1 score

Intergranular 0.91 0.80 0.92 0.08 0.82 0.85

Intragranular 0.97 0.92 0.99 0.01 0.67 0.77
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The nine parent micrographs used in this study were 
each carefully chosen with distinct thermal histories to 
test the random forest model’s suitability for segment-
ing a range of microstructures with different precipitate 
morphologies.

Intergranular carbides
The intergranular precipitates are predominantly com-
prised of primary carbides. They were quantified from 
the intergranular carbide slices produced by segmenta-
tion. The analysis demonstrated the possibility of cap-
turing the variation in the shape and sizes of carbide 
deposition along grain boundaries in HP40-Nb replica-
tion microstructures using ML. The count/mm2 of inter-
granular carbides ranged between 490 and 1730 across 
the micrographs. The average precipitate area ranged 
from 33 to 221 µm2. The area fraction of intergranu-
lar carbides ranged from 2.5 to 12.5%. There was a sig-
nificant variation in circularity and aspect ratio in the 
micrographs, with circularity ranging from 0.55 to 0.84 
and aspect ratio ranging from 0.3 to 0.5. The minimum 

solidity observed was 0.75, while the maximum was 0.9. 
Figure 8 shows the distributions of intergranular carbide 
(a) average precipitate area, (b) count/mm2, (c) area frac-
tion, (d) circularity, (e) aspect ratio, and (f ) solidity. The 
range of intergranular carbide morphologies captured via 
quantification demonstrates that due to thermal exposure 
during service, the network of thin carbides first breaks 
down with time into smaller precipitates before agglom-
erating as isolated, thick, and relatively rounded deposits.

Figure  9a shows correlations observed within the 
quantified data for intergranular carbides. The carbide 
count and area fraction have a positive correlation of 
0.39 with a p-value of 0.03. Breakdown of the carbide 
network and decreasing carbon solubility in the matrix 
result in splintered, thicker precipitates and an increase 
in both the count and total area occupied by carbides 
simultaneously, which is indicative of the accumula-
tion of thermal damage (Vaché et al. 2020; Shi and Lip-
pold 2008). The carbide count and average area have 
a negative correlation of 0.27 with a p-value of 0.06, 

Fig. 7 Sample preparation for intragranular carbide segmentation performance analysis. a Preprocessed image section, b manual labels, c 
segmentation results, d intragranular carbide slice from segmentation results, and e overlay of segmented intergranular carbides and manual labels
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corresponding to the breakdown of bodies of larger, 
networked carbides into numerous smaller precipitates. 
The average area has a negative correlation with both 
circularity and solidity by 0.66 and 0.80, respectively, 
with a p-value of ~ 0 for each. Networked carbides 
with low thermal damage have high aspect ratios and 
have relatively complex perimeters due to their depo-
sition along grain boundaries; therefore, an increase in 

average carbide area correlates to decreasing circularity 
and solidity.

Intragranular carbides
The intragranular precipitates, predominantly com-
prised of secondary carbides, were quantified from the 
intergranular carbide slices produced by segmentation. 
The analysis revealed the extent of variation in the shape 
and sizes of intragranular carbides within the matrix in 

Fig. 8 Distribution of intergranular carbide. a average area (µm2), b count/mm2, c area fraction (%), d circularity, e aspect ratio, and f solidity 
across parent images
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the thermally exposed HP40-Nb microstructures. The 
distributions of intragranular carbide (a) count/mm2, 
(b) area fraction, (c) circularity, and (d) average pre-
cipitate area are shown in Fig.  10. The count was seen 
to range between 140 and 510 across the micrographs. 
The area fraction of intragranular carbides with respect 
to the general microstructure ranges from 1 to 3.5%. As 

intragranular carbides coalesce, they grow and become 
increasingly circular, with the overall circularity for the 
analyzed dataset varying from 0.87 to 0.92. The small-
est recorded average precipitate area was 4.2 µm2, and 
the largest was 9.6 µm2. The range of intragranular car-
bide morphologies captured via quantification demon-
strates that with the onset of thermal damage, specks 

Fig. 9 Correlation plots for quantified a intergranular carbide and b intragranular carbide data
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of fine carbide precipitates appear within the material 
matrix, which then grow and coalesce as further damage 
is incurred. The large variation seen in the count, area 
fraction, and the average area within the microstruc-
tural dataset reaffirm that quantification of micrographs 
can provide an objective view toward microstructure 
evaluation.

Figure 9b shows correlations observed within the quan-
tified data for intragranular carbides. There is a negative 
correlation of 0.59 between carbide count and average 
area, while count and circularity have a negative correla-
tion of 0.70, with p-values of 0.0004 and 0, respectively. 
The correlations confirm that as the average area of 
intragranular precipitates increases, the count decreases 
because they merge and grow. The increase in aver-
age area is also seen to make the precipitates rounder, 
confirmed by the increase in circularity correlated to 
decreasing count. There is also a positive correlation of 
0.84 between the area fraction and carbide count with a 
p-value of ~ 0. When intragranular carbides first appear 
in the matrix, they are small and numerous. At this stage, 
the fresh nucleation results in higher carbide counts 
and area fractions. They then agglomerate when sub-
jected to further thermal exposure, reducing the carbide 
count, while their migration to the grain boundaries and 

coalescence with the intergranular precipitates leads to a 
concurrent decrease in area fraction. Hence, micrographs 
with higher counts of freshly nucleated intragranular car-
bides also demonstrate a higher area fraction. Stainless 
steel that is fresh or has low levels of thermal damage also 
exhibits low intragranular carbide counts and area frac-
tions; however, this dataset did not contain any repre-
sentative samples.

The distribution of carbide properties and correla-
tions observed in both intergranular (grain boundary) 
and intragranular (within the matrix) carbide precipitate 
quantification demonstrate that the batch ML segmen-
tation and subsequent quantification produced results 
in line with the expected evolution of a thermally aging 
HP40 stainless steel microstructure. These research find-
ings highlight the significant potential of ML-driven 
microstructure characterization by analyzing replication 
micrographs, with a particular emphasis on studying 
precipitates in HP40 steels. Furthermore, this innovative 
approach has the capacity to significantly advance our 
understanding of the behavior and intricate evolution of 
various microstructural features, such as precipitates and 
grain size, within alloy components subjected to severe 
environments. In the future, we will leverage a more com-
prehensive and curated dataset of replicated micrographs 

Fig. 10 Distribution of intragranular carbide. a count/mm2, b area fraction (%), c circularity, and d average area (µm2) across parent images
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to track the evolution of relevant microstructural fea-
tures during creep of HP40 steels to achieve automated, 
efficient, and precise microstructure characterization. 
This advancement will not only provide a deeper under-
standing of the creep behavior and properties of an 
important engineering alloy system, but its applications 
extend beyond steel to address the challenges posed by 
a wide range of demanding environments. Notably, high-
strength steels, nickel-based superalloys, titanium alloys, 
and aluminum alloys are examples of such alloy systems 
extensively employed in severe applications where they 
are subjected to creep and fatigue damage in high-tem-
perature environments, hydrogen embrittlement, and 
corrosion degradation.

The continued exploration of ML-driven characteriza-
tion of important microstructural components is crucial 
for the future development of safer and more efficient 
alloys capable of withstanding the challenges posed by 
demanding environments. By employing ML in the anal-
ysis of low-resolution replication micrographs, research-
ers can design materials with enhanced performance, 
durability, and reliability, specifically tailored to meet the 
rigorous requirements of such applications.

Conclusion
This paper presented an automated computational 
method to segment and quantify multiple distinct car-
bides within batches of field replication micrographs cap-
tured by optical microscopy. It provides motivation to the 
scientific community interested in applying automated 
ML-based processes to classify and quantify microstruc-
tural features in low-resolution replication micrographs. 
The micrographs inherited substantial noise and artifacts 
due to the replication process and required preprocess-
ing to improve image quality. It was noted that denois-
ing and background subtraction techniques introduced a 
lower bound for the smallest observable microstructural 
feature, as precipitates similar in size to artifacts and 
noise were filtered out. While this negatively affected the 
intragranular carbide prediction precision, the overall 
clarity of the image and ML segmentation performance 
was seen to improve the RF classifier used to segment the 
microstructures achieving an overall accuracy of 91% for 
intergranular and 97% for intragranular carbides against 
manually labeled microstructures, which is comparable 
to previous carbide identification studies conducted on 
SEM and optical micrographs.

It was observed from the variation and correlations 
within the quantified shape and distribution proper-
ties of both carbide classes that the numbers obtained 
from segmented micrographs aligned with the expected 
breakdown and subsequent agglomeration of inter-
granular carbides and the nucleation, coalescence and 

migration of intragranular carbides as HP40-Nb steel 
thermally ages. This approach has the capability to cor-
rectly identify and compare precipitate instances across 
a set of micrographs and allows for robust quantitative 
evaluations as opposed to manual visual inspections, 
which can be laborious, time-consuming, and prone 
to random error. The ML model’s performance can be 
further improved by using high-resolution, noise-free 
replication micrographs, having a larger training data-
set, and utilizing further mathematical transformations 
as features for the ML model. If a larger micrograph 
dataset can be acquired, deep learning methods such as 
convoluted neural networks (CNNs) could potentially 
produce a better segmentation performance than RFs. 
Comparing the carbide morphological features quan-
tified via machine learning using optical replication 
micrographs to those obtained from SEM micrographs 
would help further ascertain the usefulness of ML 
models applied to replication micrographs for micro-
structure analysis.

This work serves to prove that ML can be imple-
mented in industrial cases where tracking thermal 
damage to metals is of importance. Building on this ini-
tial study, the viability of ML methods must be explored 
for quantifying replicas obtained from other alloy sys-
tems where precipitate transformations across the ser-
vice life due to extreme operating conditions such as 
exposure to corrosive media, thermal loads, and pres-
surized environments impact the material’s functional 
properties. The dataset used herein did not contain any 
representative micrographs exhibiting defects such as 
voids and cracks. There were also no micrographs from 
unexposed or low thermal exposure samples, limiting 
the range of quantified morphological properties and 
the extent to which they could be linked to theoretical 
postulates related to precipitate evolution. The scope of 
this paper is restricted to demonstrating the ability to 
use ML methods to automate and quantify microstruc-
tural features from replication micrographs. Future 
work would include the identification and quantifica-
tion of both defects and grains and establishing a cri-
terion for determining the creep stage, fatigue life, or 
other relevant outcome parameters as per use case that 
a quantified micrograph exhibit.
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