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Abstract 

On account of their unique shape memory effect (SME), pseudoelasticity, and biomedical applications, shape mem-
ory alloys (SMAs) have gained significant acceptance in the industrial trade and biomedical applications over the past 
few decades. Due to their affordable constituent parts and the availability of large-scale methods that are commonly 
employed for the manufacturing of stainless steels, Fe-based shape memory alloys offer benefits in commercial pro-
duction, owing to their low cost compared to NiTi. The increasing insistence on stronger, lighter, and more functional 
materials paved the way for active materials. SMAs are a distinct grade of active materials. They exhibit attractive 
attributes like the potential to provide considerable recoverable strain while mechanical loading (superelasticity), 
shape recovery during heating (shape memory effect), and biocompatibility, which ultimately prove them to be 
one of the appropriate actuators for applications in the biomedical industry. This paper gives a review of the Mar-
tensitic transformation of some of the compositions of Fe-based SMAs, their potential to be used in civil structures 
as strengthening materials, their applications, and future research needs. This paper also focuses on the application 
of iron-based SMAs in different fields and the necessity to work on this SMA in the future since results show that Fe-
based SMAs have shown good potential and can serve as an apt alternative to Ni-based shape memory alloys, which 
on the other hand has quite a lot of disadvantages, the key one being costly. Fe-based SMAs are comparatively lower 
in cost and have a greater scope to work with in the near future.
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Introduction
Shape Memory Alloys (often called SMA) are a group 
of metal alloys that have the ability to “remember” their 
original form. When the metals are twisted or disturbed 
from their initial shape, they have the ability to come 
back to their original form when deformed due to exter-
nal factors such as magnetic field, heat, or stress. The 
reversible phase transition that SMAs go through, known 
as the martensitic transformation, causes the SME. 

Changes in the action of forces or temperature can cause 
the martensitic transition. The martensitic transforma-
tion, also known as forward transformation, occurs when 
the austenite phase (high-temperature phase) is cooled 
which is when the martensite phase appears (low-tem-
perature phase). The widely used applications of shape 
memory alloys are that connectors for hydraulic tubing 
in airplanes, heat engines, active vibration control of 
structures, orthodontic wires, and automatic switches in 
home devices. Because of the interesting shape memory 
property, they have found applications in biomedical 
implants (stents, heart valve tools), Dentistry (orthodon-
tics), MEMS, sensors, actuators, and antennae. Fe-based 
SMAs, particularly Fe–Mn–Si alloys, exhibit a lot of 
potential in civil engineering applications, although they 
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are still in the early stages of development. So far, the 
research done on Fe-based SMAs year-wise, source-wise, 
and country-wise has been depicted in Figs.  1, 2, and 3 
respectively. Figure  4a, b represents the shape memory 
effect and superelasticity in shape memory alloys. Recent 
advancements in alloy combination and manufacture 
pave the way for new applications, particularly in the field 
of fixing and building new constructions, when these 
SMAs are used as prestressing tendons. These might also 
serve as a suitable replacement for Ni-based shape mem-
ory alloys which are currently being utilized in several 
fields. Figure  5 gives a brief outlook on shape memory 
alloy, their properties, and applications.

Few alloy combinations have effectively been inves-
tigated and created until now, for example, Ni–Ti–Zr, 

Ni–Mn, and Ni–Ti–Pd. Some functional issues actually 
stay inexplicable in the above alloy combinations. For 
example, Ni–Al composites are viewed as temperamen-
tal; Ni–Ti–Zr and Ni–Mn amalgams are considered to 
be excessively fragile. This urged us to work on an alter-
native. A new market for Fe-based SMAs was gradually 
explored in the 2000s. This market included commodities 
for which Ni–Ti alloys are fruitless as production com-
ponents. Large-diameter connecting pipelines for tunnel 
establishment and crane rail joint bars (fishplates) are the 
most recent examples that have aided the Fe-based SMAs 
in breaking into this new industry. In fact, the Fe–Mn–Si 
SMAs have inherited many of the structural properties 
associated with stainless steel. Fe–SMAs behavior in cor-
rosive environments (Lee et al. 2016; Michels et al. 2018; 

Fig. 1 Documents published on Fe–SMA year-wise (Reference: Scopus database)

Fig. 2 Documents published on Fe–SMA source-wise (Reference: Scopus database)
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Hosseini et al. 2019a) as well as its long-term sturdiness 
and consistency (Ke et  al. 2023; Lee et  al. 2013; Felice 
et  al. 2023; Ghafoori et  al. 2019; Xie et  al. 2024) have 
already been studied and have given positive results. As 
a result, the Fe–Mn–Si SMAs would fit into the market 
for structural materials with the function of SME (Fig. 6).

Martensitic transformation
SMAs undergo a martensitic change in the forward 
phase. In general, they undergo a solid-state diffusion-
less transformation in which atoms travel in a regular 
pattern in relation to their surroundings. The parent 
phase is sheared uniformly, yielding a new crystal struc-
ture that has no changes in composition. Although the 
relative positions of atoms vary negligibly, the move-
ment of atoms as a group can cause severe macroscopic 
deformations. A temperature shift, such as mechanical 
distortion or quenching can both cause the martensitic 
transition. A martensitic transformation that is induced 
mechanically occurs not just in shape memory alloys, 
but also in stainless steel, carbon steel, and a variety of 
other alloys. For instance, in the automotive industry, 
steels with high Mn (15–30% mass) are employed. They 
provide high strength and resistance to crashes for the 
body parts of the automobile because of their excellent 
ductility (with failure strains from 80 to 90%) and rea-
sonably elevated ultimate strengths. The amount of Mn 
in these steels has a big impact on how they behave. As 
per the crystal structure, the typical Martensitic trans-
formation in Fe-based alloys can be divided into two 
phases: transitions from the parent (FCC) to the mar-
tensite (BCC, BCT, or FCT) and transformations from 
parent to martensite (HCP). Fe–Mn–Si is by far the 
most exhaustively researched Fe-based SMA (Sato et al. 
1982; Roca et al. 2017). Apart from the shape memory 
effect, Fe–Mn–Si has excellent fatigue performance and 

is used as a seismic dampening component (Sawagu-
chi et  al. 2016). The transition, however, is non-ther-
moelastic, thus not possible to attain superelasticity. 
It was reported that thermoelastic transformation can 
occur when a matrix is sufficiently reinforced and the 
BCT structure’s tetragonality is sufficiently high (Maki 
et  al. 1984; Maki n.d.). The transformation of the Fe–
Ni–Co–Ti alloy to thermoelastic occurs because of 
the coherence of the phase’s precipitation with the 
γ matrix (Maki et  al. 1984). However, due to the brit-
tleness generated by precipitation of grain boundary, 
it was previously not easy to achieve superelasticity 
at normal temperature (room temperature). This was 
solved by maintaining the character distribution of the 
grain boundary under control. Researchers have found 
the feasibility of superelasticity at normal tempera-
ture (room temperature) in Fe–Ni–Co–Al–Ta–B alloy 
in 2010 (Tanaka et  al. 2010), and later the same prop-
erty was found in its family of alloys, like Fe–Ni–Co–
Al–Nb–B and Fe–Ni–Co–Al–Ti–B (Omori et al. 2013; 
Chumlyakov et al. 2016; Lee et al. 2014). In this work, 
the grain boundary energy was decreased with a strong 
recrystallization texture achieved through appropriate 
cold-rolling and annealing the result of which precipi-
tation of the grain boundary was successfully inhibited. 
As a result, thin sheets can achieve a substantial super 
elastic strain of up to 13.5%; however, the brittleness of 
the wires remains because of the difficulties in attaining 
the low-energy grain boundary. In these alloy systems, 
γ parent phase’s transformations to the martensitic 
phase are responsible for the characteristics of shape 
memory alloy. Fe–Mn–Al–Ni, a novel ferrous SMA 
was discovered in 2011 (Qiang et al. 2022). The crystal 
structures are portrayed in Fig. 7a and its superelastic-
ity is portrayed in Fig.  7b. The microstructure of this 
alloy is comparable to that of Fe–Ni–Co-based SMAs.

Fig. 3 Documents published by country (Reference: Scopus database)
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Furthermore, precipitates that are nanosized and 
coherent developed in a disordered matrix with an 
ordered structure proves vital in thermoelastic marten-
sitic transition, despite the fact that the α (bcc) “ferrite” 
phase, transforms martensitically to γ(fcc) “austenite” 
phase, in contrast traditional Fe-based SMAs with γ par-
ent phase. In the Fe–Mn–Ga system (Omori et al. 2009; 
Zhu et  al. 2009), a comparable Martensitic transfor-
mation from the to the has been observed. The Fe–
Mn–Al–Ni alloy can solve a problem in alloys that are 

superelastic, which has large stress sensitivity to temper-
ature for martensitic transformation and consequently 
small temperature window for superelasticity, as an add-
on to the merits of the cheap ingredients and appreciable 
ability towards cold working. Until now, superelasticity in 
Fe–Mn–Al–Ni alloy has been achieved at temperatures 
ranging from – 263 to 240  °C, with a small dependence 
of the critical stress on the temperature; thus, this SMA 
is a promising material for practical applications. We can 
find further details about Fe–SMA alloys and strips in 

Fig. 4 a Picture depicting shape memory effect and superelasticity. b Stress strain temperature diagram and crystal lattices (Porentaa et al. 2021) 
(Reused from Elsevier under the Creative Commons CC-BY licence)
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(Sawaguchi et al. 2016; Hosseini et al. 2019b; Soroushian 
et al. 1770). These Fe–SMA strips or rebars, are already 
in use and they can be found in a variety of  rehabilita-
tion projects (CEN 2004; Pan et  al. 2019), and concrete 
T-beams that are shear-critical reinforced can be rein-
forced using Fe–SMA alloy.

Applications involving reinforced concrete beams
Shape memory alloys (SMAs) and already present or new 
RC bodies can be utilized together to give new capabili-
ties or improve their protective ability and toughness, 

according to recent research (Cladera et al. 2014a, 2014b; 
Fritsch et  al. 2010; Abouali et  al. 2019; Cortés-Puentes 
et al. 2018; Varughese and El-Hacha 2020). The majority 
of research on employing SMAs in structural engineer-
ing to date has focused on improving damping capac-
ity and superelastic behavior by utilizing Ni–Ti alloys 
and Cu-based alloys, especially to develop vibration 
mitigation and enhance seismic resistance to civil struc-
tures (Cladera et  al. 2014b; Cortés-Puentes et  al. 2018; 
Varughese and El-Hacha 2020; Otsuka and Wayman 
1998; Ozbulut et  al. 2011a). However, one research has 

Fig. 5 General overview of SMAs

Fig. 6 Graph indicating the stress and recoverable strain of materials (Kanayo et al. 2016). The iron-based alloy referred here is Fe–28Ni–17Co–
11.5Al–2.5Ta–0.05B (at.%); (reused with permission from Elsevier)
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employed superelastic behavior to develop the behavior 
of reinforced concrete members that are shear-critical 
and approaching their failure state. Mas et al. (2016) con-
ducted experimental research on the shear failure of con-
tinuous rectangular spiral internal pseudoelastic Ni–Ti 
reinforced concrete beams. They came to the conclusion 
that trading steel reinforcement for SMAs in actual struc-
ture was hardly cost-effective due to current Ni–Ti’s tech-
nology and price, and the fact that these materials should 
only be utilized in places of the structures where they are 
absolutely necessary because they permit the formation 
of high-tech fuses to safeguard the whole architecture. 

As a result, studies to tackle the distinct structural chal-
lenges in specific places by using superelastic Ni–Ti 
alloys are still going strong (Nahar et al. 2019; Wang et al. 
2019; Navarro-Gomez and Bonet 2019; Casagrande et al. 
2019), and the same is happening in the study to use the 
other cost-effective SMAs like Cu–Al–Mn (Hosseini 
et  al. 2019b). The research on utilizing Fe–SMA strips 
to retrofit reinforced concrete T-beams as shear external 
reinforcement was presented by Zerbe et al. (2017). The 
retrofitted beams’ shear strength was increased by 20 to 
25% in this study; however, the anchorage system used 
did influence the test results, and the final outcomes of 

Fig. 7 a Crystal lattices of a α-Martensite (BCC); b γ-Austenite (FCC); c ε-Martensite (HCP). (Qiang et al. 2022) (Reused from MDPI under Creative 
Commons licence). b Superelasticity in Fe–Mn–Ni–Al SMA (Abuzaid and Sehitoglu 2019) (reused with permission from Elsevier)
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the research were hardly definitive. Montoya-Coronado 
et al. (2019) gave the latest findings of a campaign aimed 
at determining the possibility of utilizing Fe–SMA strips 
to reinforce shear critical beams using Fe–SMA strips 
through experiments. The Fe–SMA strips were thor-
oughly investigated. Ten small-scale beam tests clearly 
demonstrated the improvement in shear strength of 
beams that are retrofitted, by examining a fully wrapped 
new anchorage system. The findings of preliminary shear 
strengthening in T-beams were presented by Shahverdi 
et  al. (2019). They utilized shotcrete mortar and ribbed 
“memory steel” stirrups. One significant discovery was 
that the system’s operation was not influenced by bend-
ing the corners of the stirrups. The prestressing effect was 
validated by reduced widths of crack for service loads, 
according to the authors who produced the results that 
a shotcrete layer embedded with Fe–SMA stirrups was a 
possible shear strengthening option which was straight-
forward for implementing in appropriate applications. 
The SMA employed in the shear strengthening proce-
dures (Zerbe et al. 2017; Montoya-Coronado et al. 2019; 
Shahverdi et al. 2019) is a cost-effective SMA. The com-
position of the alloy is 63%Fe–17%Mn–5%Si–10%Cr–
4%Ni–1% (V, C) (in mass %) (Dong et al. 2009). It’s worth 
noting that Fe, a relatively inexpensive mineral, makes up 
about 63 percent of its bulk. Despite the fact that supere-
lasticity isn’t applicable for the mentioned alloy due to its 
imperfect martensitic transformation, the high ductility 
and shape memory effect (SME) are noticeable (Cladera 
et  al. 2014a; Shahverdi et  al. 2020; Hosseini et  al. 2018) 
and contain extra information on Fe-based SMA alloys 
and strips. These Fe–SMA strips or rebars are being 
utilized in various projects involving real rehabilitation 

(Schranz et al. 2019; Mercier et al. 2019), and they can be 
used to reinforce shear-critical concrete T-beams.

Other applications of Fe‑based SMAs
Fe-based SMAs in civil engineering constructions are 
still in their infancy, with only a few research applica-
tions documented in the field. However, two uses in other 
similar industries have been successful: the fabrication 
of crane rail fishplates to link fixed sections of rails (as 
shown in Fig.  8), for highly durable cranes (Maruyama 
and Kubo 2011) and pipe couplings for pipelines. Gha-
foori et  al. investigated the alloy’s cyclic deformation 
and fatigue behavior (Izadia et al. 2018). They found that 
during high cycle fatigue loads, the stiffness of the alloy 
was fairly constant, but the recovery stress was reduced, 
which was attributed to transition-induced stress relief 
under fatigue loading. A formula was also proposed by 
them for safely designing alloys as structural reinforce-
ment under high cycle fatigue loading conditions.

Moreover, Hosseini et  al. investigated the develop-
ment of stress recovery of alloys under various constraint 
parameters (Hosseini et  al. 2018). They examined the 
pressure-treated alloy’s cyclic response after a second 
thermal activation. They discovered that, despite the 
fact that the amplitude of the restoring force decreased 
under cyclic loading, it was found that secondary ther-
mal activation can recover most of the relaxed restor-
ing force. Fe–SMAs are in the free-stressed austenite 
phase at ambient temperature. The stress causes a so-
called martensitic transformation (i.e., direct transi-
tion) from γ austenite to ε martensite phase, producing 
stress-induced martensite. After heating and cooling, the 
recoverable martensitic phase transition can be reversed 

Fig. 8 Crane rail SMA fish-plate (schematic)
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to form the austenitic phase. Consequently, during the 
reverse transformation, the Fe–SMA recovers its origi-
nal shape. When the distortion of Fe–SMA is controlled 
while reverse transformation, the alloy creates restora-
tive stresses in an attempt to come back to its original 
shape. This recovery stress could be applied to buildings 
to provide prestressing forces. Fe-based SMA strips were 
implanted in the center of the concrete bars and Fe-based 
SMA strips were also used to reinforce concrete beams 
(Czaderski et al. 2015). Fe–SMA ribbed reinforcement is 

used in ongoing research to reinforce large beams. The 
key applications of Fe-based SMAs are listed in Fig. 9.

Transformation in Fe–Mn–Si–Cr–Ni SMA
The impact of microstructural changes on the shape 
memory performance of Fe15Mn7Si9Cr5Ni (wt.%) stain-
less steel SMA was reported by Bikas C et al. (2003). The 
transition temperatures and material composition of the 
component phases are given in Table 1.

Fig. 9 Applications of Fe-based SMAs

Table 1 Transformation temperatures of Fe–Mn–Si–Cr–Ni

Sample Ms
(Martensite start)

Mf
(Martensite finish)

As
(Austenite Start)

Af
(Austenite finish)

Composition
(%)

A 24 °C  − 26  °C 112  °C 171  °C Fe: 63.42
Mn: 15.45
Si: 7.03
Cr: 9.11
Ni: 4.98

B 30  °C  − 40  °C 122  °C 173  °C Fe: 64.96
Mn: 14.51
Si: 7.27
Cr: 8.46
Ni: 4.81

C 24  °C  − 31  °C 97  °C 173  °C Fe: 64.44
Mn: 14.82
Si: 7.03
Cr: 8.87
Ni: 4.84
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Transformation in Fe–Mn–Si–Co SMA
The transition temperatures of Fe–30Mn–6Si–xCo (x = 0 
to 9 wt. pct.) SMAs were investigated by Maji, B.C. et al. 
(2013). They came to the conclusion that adding cobalt 
lowers the hindrance to plastic yielding. The influence 
of (Fe, -Co)5Mn3Si2 precipitates, however, induces an 
increase in flow stress above 5% Co. In Co-containing 
alloys, plastic yielding appears to be nonuniform and 
occurs concurrently with the formation of stress-induced 
martensite. Table  2 shows the transformation tempera-
tures of Fe–Mn–Si–Co:

SME improvisation experiment in Fe–Mn–Si‑based 
SMA
M.J. Xue et  al. (2022). proposed decreasing anneal-
ing twin boundary (ATB) density to increase the shape 
memory effect of Fe–Mn–Si-based alloys. Their results 
showed that reducing ATB density does not result in 
the improvement of the shape memory effect. An ingot 
of the composition Fe–20Mn–5.5Si–9Cr–5Ni (wt%) 
was melted under an argon atmosphere using induction 

melting. The cylindrical ingot was forged into a billet 
at 1050  °C. Blocks cut from the billet are subjected to a 
solution treatment, followed by water quenching. Cer-
tain blocks were annealed, followed by air cooling. The 
Shape memory effect of these samples was assessed by 
bending around a series of half-circle molds with differ-
ent radii and performing tensile tests to analyze the strain 
and shape recovery. The TEM image of the alloy after 4% 
tensile deformation is shown in Fig. 10.

Experimental study of Fe–Mn–Si–Cr SMA
The cause of temperature’s effect on critical stress of 
Fe–Mn–Si–Cr SMA for several loading conditions was 
inspected by Takamasa Yoshikawa et  al. (2017). Fe–
28Mn–6Si–5Cr is the chemical composition of the mate-
rial utilized. This material’s transition temperatures are 
listed below in Table 3.

The sample material rod was given a shape memory 
treatment at 1223  K for 30  min before being quenched 
in water. The material was initially loaded at varied 
temperatures. The pieces were loaded with tension, 

Table 2 Transformation temperatures of Fe–Mn–Si–Co

Alloys Ms
(martensite start temperature)

Mf
(martensite finish 
temperature)

As 
(austenite
start temperature)

Af
(austenite 
finish 
temperature)

0 Co 59.58 °C 13.79 °C 134.39 °C 177.71 °C

1 Co 40.45 °C  − 8.42 °C 131.48 °C 174.32 °C

3 Co 24.05 °C  − 6.62 °C 133.57 °C 164.17 °C

5 Co 14.73 °C – 22.07 °C 130.76 °C 161.21 °C

7 Co 33.91 °C – 4.78 °C 134.04 °C 184.24 °C

9 Co 32.25 °C – 8.44 °C 135.56 °C 175.63 °C

Fig. 10 TEM analysis after 4% tensile deformation. a Image portraying the stress-induced martensite plate. b Selected area diffraction pattern 
of the highlighted area. c Key figure of b. (Xue et al. 2022) (reused with permission from Elsevier)



Page 10 of 17Santosh and Pavithran  J Mater. Sci: Mater Eng.            (2024) 19:8 

compression, and torsion at a strain rate of 2 ×  10−4   s−1 
under various temperatures. The high-temperature strain 
gauge was applied to calculate the strain as well as the 
shape recovery during sample loading and unloading. 
Experimental results show that this material undergoes 
a stress-induced martensitic transition before failure at 
ambient temperatures of uni-axial tension, compression, 
and torsion. Since the yield stress in that particular mate-
rial is greater than martensitic transition stress at room 
temperature, it can exhibit a shape memory effect. Above 
135 °C, the critical stresses of the materials change back. 
Rather than improving the SME of that material, defor-
mation at temperatures above 135 °C improves the plastic 
workability. As a result, using the shape memory effect in 
that workpiece requires deformation below 135 °C.

A. Baruj et al. (2010) studied the mechanical behavior 
of Fe–28Mn–6Si–5Cr (wt%) alloy after basic thermome-
chanical treatment including aging at 800  °C for 10 min 
after rolling at 600 °C. They concluded that, up to 110 °C, 
martensite can be induced in this material and stress-
induced martensite was not observed in this material at 
temperatures above 150  °C. Furthermore, at tempera-
tures between 90  °C and 110  °C, a relatively substantial 
pseudo-elastic behavior was found, correlating with the 
fact that martensite occurs in this region.

J. Ma et  al. (2012) used thermal cycling to study the 
shape memory properties of the single crystal material 
Fe–28Ni–17Co–11.5Al–2.5Ta (at. %) at constant levels 
of tensile and compressive stress. The observed transition 
strain levels in all samples were lower than theoretically 
evaluated, potentially due to a huge volume fraction of 
non-transforming particles, partial martensite alignment 
due to martensite variant interactions, and a marginally 
greater martensite c/a ratio in the specimens used in 
their research.

Iwamoto T. et  al. (2015) performed an experimen-
tal analysis of the rate-sensitive tensile deformation 
characteristic of Fe–SMA alloys. Two separate test rigs 
were used to perform tensile tests on iron-based shape 
memory alloys at various strain rates: a current mate-
rial testing machine and the split Hopkinson pressure 
bar technique-based impact testing equipment. Dur-
ing the testing, a thermocouple was used to record the 
temperature rise during quasi-static deformation. The 
improved deformation owing to the shape memory effect 

was determined after a quasi-static test by heating the 
deformed specimen to the  Af temperature. At last, they 
conclude by making the following points:

1. The true stress level rises as the strain rates increase. 
The effect of positive rate sensitivity on deformation 
behavior may be seen clearly. The viscous drag that 
occurs during mobile dislocation and/or twinning 
causes stress to increase in proportion to the strain 
rate, which is a well-known thermal activation pro-
cess. There is a correlation between the promotion of 
the deformation and an increase in temperature. A 
suppression of martensitic transformation is brought 
about as a result of the temperature change. A greater 
amount of stress should be applied due to the sup-
pression in order to obtain the desired level of strain. 
Let us take a hypothetical scenario in which there is 
no heating as a result of irreversible work. This will 
help us better understand the mechanism. When the 
martensitic transformation itself becomes less signif-
icant in relation to the strain as a result of a change in 
the strain rate, the deformation process must be sub-
jected to a significantly greater level of stress.

2. The shape recovery factor is independent of the 
strain rate for quasi-static tests using different strain 
rates. Figure 11 summarizes the effects of stress and 
temperature on the Fe–Mn–Si–Cr SMA.

Scope for applications and upcoming applications
Takahiro Sawaguchi et  al. have worked on Fe–Mn–Si 
based Alloys to seismic response control (Sawaguchi 
et al. 2016). Wandong Wang et al. have developed a new 
approach for fatigue strengthening of structures made of 
metals that utilizes a property of SMA viz, shape memory 
effect of a Fe–SMA as well as the mechanism of bridg-
ing provided by the bonding process (Wang et al. 2021). 
Antoni Cladera et al. worked on using iron-based SMAs 
to reinforce slender concrete T-shaped beams (Clad-
era et al. 2020). T. Maruyama et al. have researched the 
connection of rails with SMA fishplates, SMA fishplates 
for crane rails, Pipe joints for steel pipes, and so on 
(Maruyama and Kubo 2011). Kinam Hong et  al. Kinam 
Hong et al. wanted to see if a Fe–SMA might be used to 
reinforce civil structures (Hong et  al. 2018). Diego Isi-
doro Heredia Rosa used uniaxial coupon experiments 
to explore the behavior of Fe–SMAs subjected to cyclic 
inelastic straining (Rosa et  al. 2020). Mohammadreza 
Izadi et  al. Retrofitted the steel bridge connections that 
are cracked due to fatigue using smart Fe–SMAs (Izadi 
et al. 2019a). Moslem Shahverdi et al. studied the mate-
rial characterization of Fe-based SMA strips for the rein-
forcement of reinforced concrete components (Shahverdi 
et al. 2018). SMAs, such as Ni–Ti–Nb alloys, can be used 

Table 3 Transformation temperatures

Ms
(Martensite 
start 
temperature)

Mf
(Martensite 
finish 
temperature)

As
(Austenite 
start 
temperature)

Af
(Austenite finish 
temperature)

29.1 °C  − 3.8 °C 136.1 °C 167.7 °C
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in civil engineering applications because of their super-
elasticity or SME properties (Choi et  al. 2012; Wei and 
Xinqing 2009; Dommer and Andrawes 2012). In this area, 
some demonstration projects exist (Janke et  al. 2005a; 
Indirli et  al. 2001; Castellano et  al. 2001; Moser et  al. 
2005; Shin and Andrawes 2010; Saiidi et  al. 2007; Saiidi 
and Wang 2006). The SME feature of the shape mem-
ory alloys had been exploited before and after tension-
ing operations carried out in civil constructions (Janke 
et al. 2005a; Rojob and El-Hacha 2017), whereas energy 
dissipation and passive damping are the applications of 
superelasticity that have been primarily focused in civil 
engineering construction (Rojob and El-Hacha 2017; Sun 
and Rajapakse 2003; Graesser and Cozzarelli 1991). Con-
ventional strengthening procedures can be addressed by 
the introduction of novel materials with unique features, 
like carbon-fiber reinforced polymers (CFRPs) and Fe–
SMAs (Izadi et  al. 2018a, 2018b; Hollaway 2002; Teng 
et al. 2012; Ghafoori and Motavalli 2015a; Ghafoori et al. 
2012). The usage of prestressed (activated) CFRP com-
posites for fatigue strengthening of various steel mem-
bers has piqued curiosity (Teng et  al. 2012; Ghafoori 
et  al. 2012; Ghafoori and Motavalli 2015b, 2015c; Shaat 
et  al. 2004), but the usage of prestressed Fe–SMAs for 
steel strengthening is a relatively new concept (Izadi et al. 
2018a, 2018b; Izadi et al. 2019b) and has a greater scope 

for future applications and research. Table 4 lists the cur-
rent research on iron-based SMAs in the field of civil 
engineering.

Current research needs
Despite extensive investigations on the behavior of Fe–
Mn–Si alloys, some aspects remain unsolved, necessitat-
ing future research on specific topics. Despite the fact 
that the recovery stresses are an essential crucial place 
for employing SMAs as prestressing materials, a  vast 
majority of studies on thermomechanical treatments 
throughout the process of production have concen-
trated on something like developing the recovery strain, 
etc. As a result, a thorough examination of improving 
the efficiency of recovery stresses for various composi-
tions of alloys is necessary. Furthermore, relaxation and 
fatigue aspects have not been adequately explored in 
terms of material attributes. More information on corro-
sion behavior can be found, but for prestressing applica-
tions, knowing the corrosion characteristics of concrete 
in an alkaline environment is essential. Obtaining huge 
amounts of materials that are necessary for civil engi-
neering applications and extremely large production 
demands research. In order to produce any product, it 
is a necessity to develop weldability expertise. Various 
publications cover the weldability characteristics in the 

Fig. 11 Effect on Fe–Mn–Si–Cr SMA
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austenite phase of Fe-based SMAs, however for a given 
welded alloy kept in the martensitic phase, knowing the 
temperature-influenced zone in it for various welding 
procedures would be immensely beneficial. The devel-
opment of low-cost materials and the research of novel 
industrial applications for Fe-based SMAs are the two 
main issues to be tackled. Given that the Fe–Mn–Si SMA 
shows only one cycle of the SME and afterward functions 

as a reinforcement component at the installation site, we 
are optimistic about establishing a new application field 
for it. The Fe–Mn–Al–Ni SMA also suffers from cyclic 
superelasticity deterioration, which is a common prob-
lem with superelastic alloys. In Fe–Mn–Al–Ni alloys, 
rapid superelasticity deterioration has been observed 
(Vollmer et  al. 2016), which should be addressed for 
realistic cyclic applications. Long-term aging at room 

Table 4 Applications in civil structures

Composition Application Reference

Fe–20.2Mn–5.6Siv8.9Cr–5.0Ni Control of Seismic response. Sawaguchi et al. 2016)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) A new approach for fatigue strengthening of structures made of metals that utilizes 
a property of SMA viz, SME of a Fe-SMA as well as the mechanism of bridging provided 
by the bonding process. (as shown in Fig. 12)

Wang et al. 2021)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) Reinforce slender concrete T-shaped beams. Cladera et al. 2020)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) Reinforce civil structures. Hong et al. 2018)

Fe–Mn–Si–Cr–Ni Performed uniaxial coupon experiments to explore the characteristics of (Fe–SMAs) sub-
jected to inelastic cyclic straining.

Rosa 2020)

Fe–Mn–Si–Cr–Ni Retrofitted the steel bridge connections that are cracked due to fatigue using smart Fe–
SMAs.

Izadi et al. 2019a)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) Material characterization of Fe–SMA strips for the reinforcement of RC components. Shahverdi et al. 2018)

Fe–17Mn–5Si–10Cr–5Ni Seismic damping application. Fang et al. 2021)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) The cyclic behavior of activated SMA after a second thermal activation was investigated 
in this study.

Hosseini et al. 2018)

Fe–Mn–Si–Cr–Ni This was the first study to look at the structural fire behavior of structural members 
strengthened by prestressed Fe–SMA in a systematic way.

Ghafoori et al. 2019)

Fe17Mn–5Si–10Cr–4Ni–1(V, C) The Fe–Mn–Si–Cr–Ni SMA fatigue behavior and cyclic deformation were investigated. Ghafoori et al. 2017)

Fe–17Mn–5Si–10Cr–4Ni–1(V, C) They investigated how Fe–SMA strips strengthened and prestressed RC beams. Shahverdi et al. 2016)

Fe–27.2Mn–5.69Si–5.02Cr–0.047C They inferred that, with increasing levels of pretensile strain, the bending strength 
of the Fe–Mn–Si–Cr SMA composites increases.

Watanabe et al. 2002)

Fe–16Mn–5Si–10Cr–4Ni–1(V, N) According to the findings, pre-deformation at room temperature prior to aging or defor-
mation at lower temperature after aging process can increase shape memory qualities 
greatly.

Li et al. 2013)

Fig. 12 Novel fatigue strengthening method done by Wandong Wang et al. (2021) (Reused from Elsevier under the terms of the Creative 
Commons CC-BY license)
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temperature has also been found to change the criti-
cal stress (Ozcan et  al. 2018). The temperature-based 
SME has received less study because the output stress 
values that are received as output are not found to be 
significant. The reverse SME (Peng et  al. 2017) was just 
observed. Due to its best-in-class shape memory capa-
bilities (Miyazaki et al. 1981, 1999) and biocompatibility 
(Mantovani 2000), Ni–Ti alloys are being commercially 
used in sectors such as healthcare, automobile, aviation, 
and seismic, as well as for end-user goods (Humbeeck 
1999; Morgan 2004; Jani et al. 2014; Desroches and Smith 
2004; Janke et al. 2005b). No real application of Fe-based 
SMAs for structural damping has been documented so 
far. The large damping impact generated by the marten-
sitic transformation is reported in TRIP/TWIP Fe–Mn 
alloys (Lee et  al. 1996; Jee et  al. 1997; Frommeyer et  al. 
2003; Watanabe et al. 2010). Sawaguchi et al. (Sawaguchi 
et  al. 2006a, 2006b) discovered that the Fe–28Mn–6Si–
5Cr–05NbC SMAs had a damping capacity of over 0.1% 
in the large-strain amplitude area. The corrosion resist-
ance of Fe–Mn–Si SMAs has been investigated for vari-
ous compositions of alloys in severe surroundings like 
NaCl and H2SO4 solutions (Söderberg et  al. 1999; Lin 
et al. 2002; Huang et al. 2004; Maji et al. 2006; Hu et al. 
2009; Charfi et  al. 2009, 2012; Della Rovere et  al. 2011, 
2012a, 2012b). The corrosion resistance in an alkaline 
environment, however, is yet to be investigated. Although 
several investigations on the weldability features of Fe-
based SMAs have been conducted (Janke et  al. 2005a; 
Lin et al. 2000; Dong et al. 2006; Qiao et al. 2007; Zhou 
et al. 2010, 2012), more research is required. Some other 

SMAs, like Ni–Ti or Cu–based alloys, are being used in 
structural applications (Li et  al. 2013; Alam et  al. 2007; 
Song et  al. 2006; Czaderski et  al. 2006; Wu et  al. 2012; 
Ozbulut et al. 2011b; Sun 2011; Branco et al. 2012; Isal-
gue et al. 2012; Dommer and Andrawes 2012; Muntasir-
Billah and Alam 2012; Cladera et  al. 2013; Torra et  al. 
2013), therefore Fe-based SMAs should receive more 
attention for their construction applications. However, 
as the demand for SMAs develops, researchers must con-
centrate their efforts on creating new SMAs with new 
capabilities and features (Fe-based SMAs), which will be 
a viable replacement for Ni–Ti SMAs in the near future. 
Figure 13 summarises the key research needed to pursue 
research in the field of Fe-based SMAs. Figure  13 sum-
marises the key research needed to pursue research in 
the field of Fe-based SMAs.

Conclusions
This paper gives an overview of the Martensitic transfor-
mation of different compositions of Fe-based SMAs, their 
applications, and future research needs. In comparison 
with original alloys that emerged in the 1980s, study on 
new Fe-based SMAs has accelerated significantly in the 
last decade, with the development of Fe–Mn–Si alloys 
which yield recovery stresses at a higher level at reduced 
temperature conditions. Utilization of Fe-based SMA 
tendons for replacing or reinforcing actual buildings is 
propitious for the foreseeable future. There are various 
advantages to using iron-based SMA tendons, includ-
ing negligible friction losses, no need for anchor heads 
and ducts, and no need for room to apply the force by 

Fig. 13 Current research needs 
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hydraulic equipment. The cost has been cheaper for these 
new Fe-based SMAs because of the usage of inexpen-
sive iron as well as the ability to melt and produce those 
SMAs in regular atmospheric conditions. These novel 
Fe–Mn–Si alloys have stronger elastic stiffness and broad 
temperature transition hysteresis than existing SMAs, 
such as Ni–Ti alloys. They are also easy to work with, cor-
rosion-resistant, and weldable. In recent times, new Fe–
Mn–Si shape memory alloys that have fine precipitates 
are being produced, conceding for high recovery stresses 
without requiring thermomechanical conditioning.
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