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Abstract 

This work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The 
study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type 
as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using 
MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate 
individual parameter influences, and create linear regression models. The experiments reveal neem oil with gra-
phene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually 
represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) 
models are compared for surface roughness prediction, with ANN showing superior performance. The findings advo-
cate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly 
practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable 
machining solutions.

Keywords Optimization, Milling parameters, AISI4140 steel, Taguchi analysis, Metal cutting

Introduction
Nanofluids represent a novel category of fluids in which 
nanometer-sized materials such as nanoparticles, 
nanofibers, nanotubes, nanorods, nanosheets, and drop-
lets are dispersed within the base fluids (Anthony Xavior 
and Adithan 2009). These fluids are essentially nanoscale 
colloidal suspensions that incorporate solid nanoma-
terials. Given their two-phase composition involving a 
solid phase and a liquid phase, addressing the pertinent 
challenges associated with two-phase systems becomes 
crucial (Kuram et al. 2010). Of particular significance in 
the realm of nano-cutting fluids, the issue of nanofluid 

stability arises, posing a considerable obstacle in achiev-
ing the desired stability of these fluids (Zhang et al. 2012).

In recent years, nanofluids have gained significant 
prominence, finding diverse applications across various 
domains and playing a crucial role in numerous aspects 
of life. While a considerable body of research articles in 
this field predominantly focuses on experimental and 
theoretical studies related to the thermo-physical prop-
erties and convective heat transfer of nanofluids (Lawal 
et  al. 2015; Ademoh et  al. 2016), there is a noticeable 
trend towards exploring novel application avenues for 
these fluids, particularly in the context of their heat 
transfer properties (Onuoha et al. 1330). The diminutive 
size of nanoparticles, often measuring less than 100 nm, 
endows them with the capacity to engage with liquids at a 
molecular level, imparting superior heat conduction abil-
ities compared to conventional heat transfer fluids that 
incorporate larger particles. Notably, metallic nanofluids 
have emerged as a viable means to preserve enhanced 

*Correspondence:
Pankaj Krishnath Jadhav
mec21pk.jadhav@pg.ictmumbai.edu.in
R. S. N. Sahai
rsn.sahai@ictmumbai.edu.in
1 General Engineering Department, Institute of Chemical Technology, 
Mumbai, Maharashtra, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40712-024-00154-y&domain=pdf
http://orcid.org/0009-0001-1771-5139


Page 2 of 13Jadhav and Sahai  J Mater. Sci: Mater Eng.           (2024) 19:13 

thermo-physical properties, including thermal conduc-
tivity, thermal diffusivity, viscosity, and convective heat 
transfer coefficients, in comparison to base fluids such 
as oil or water. This surge in the importance of nanoflu-
ids is evident across various fields, with notable appli-
cations extending to solar collector systems and solar 
thermal storage (Nizamuddin et al. 1045; Mir and Wani 
2018; Gunjal and Patil 2018). The unique characteristics 
of nanofluids position them as valuable contributors to 
advancements in heat transfer technology, opening up 
new possibilities for more efficient and sustainable sys-
tems in diverse industrial and scientific domains.

Nanofluids exhibit improved stability and rheological 
properties, enhanced thermal conductivity, and minimal 
pressure drop penalties when compared to suspensions 
containing larger millimeter- or micrometer-sized parti-
cles (Lenin et al. 2021). This novel composite fluid bears 
considerable significance, yet there remains a dearth 
of research and information surrounding issues such as 
nanofluid preparation and stability. Accurate prediction 
of nanofluid thermal conductivity under industrial con-
ditions and the viscosity of nanofluids in conjunction 
with heat transfer processes hold critical importance 
(Agrawal and Patil 2018). Given the ongoing industrial 
advancements and the demand for innovative processes 
to enhance production, comprehensive studies are indis-
pensable across diverse domains. Manufacturers consist-
ently strive for increased efficiency and profits, aiming to 
minimize production time, costs, energy consumption, 
and resource utilization while simultaneously improving 
performance (Onuoha et al. 2016; Agu et al. 2019). This 
pursuit involves cutting fluids, which play a pivotal role 
in achieving these goals.

The role of cutting fluids is paramount, as they prevent 
direct metal-to-metal contact, thereby mitigating inter-
nal friction (Syafiq et  al. 2020). In metalworking opera-
tions, the introduction of a lubricant between surfaces 
reduces the frictional resistance. Lubricants form a pro-
tective film that separates the sliding surfaces, leading 
to reduced friction and wear (Osayi et  al. 2021). Addi-
tionally, cutting fluids possess the capacity to cool the 
workpiece, the cutting tool, and the chip. They also aid 
in the removal of the generated chips during the cutting 
process. Cutting fluids prevents rewelding and corro-
sion, reduce machine energy consumption, and extend 
tool life (Khan Aug. 2009). During metal cutting opera-
tions, cutting fluids serve a threefold purpose: they cool 
the workpiece and cutting tool surfaces, remove chips 
from the cutting zone, and lubricate the tool-workpiece 
interface (Lenin et  al. 2021). While cutting fluids have 
been recognized for their positive contributions to tool 
economy, tolerance maintenance, and surface preserva-
tion, their application also raises concerns about human 

health and environmental impact, both during usage 
and disposal. Moreover, cutting fluid costs constitute a 
significant portion (16–20%) of production expenses in 
the manufacturing industry. Therefore, it is imperative to 
exercise caution and avoid excessive use of these fluids, 
particularly flood lubrication, to ensure efficient resource 
management. The field of machining and metal cutting 
processes has seen substantial advancements over the 
years, with ongoing research and practical innovations 
aimed at enhancing cutting tool performance, surface 
quality, and overall machining efficiency. One critical 
element in machining operations is the selection and 
use of cutting fluids, which are essential for extending 
tool life, controlling temperature, reducing friction, and 
improving surface finish. This introduction summarizes 
key research papers that delve into the impact of cutting 
fluids on various machining parameters and outcomes, 
contributing to a deeper understanding of their role in 
machining processes.

Research investigations, exemplified by the works of 
Xavior and Adithan (Anthony Xavior and Adithan 2009), 
have explored the impact of cutting fluids on distinct 
materials, with a specific focus on processes like turn-
ing AISI 304 austenitic stainless steel. Their research 
underscores the critical role of evaluating tool wear and 
surface roughness to gauge the efficacy of cutting fluids 
in machining operations. Likewise, Kuram et  al.’s study 
(Kuram et  al. 2010) has employed optimization meth-
odologies such as Taguchi and ANOVA to refine cutting 
fluids and machining parameters, specifically in the con-
text of milling operations. These studies collectively con-
tribute valuable insights into the nuanced relationship 
between cutting fluids, material behavior, and machining 
performance.

Recent research has prominently featured the explo-
ration of sustainable and environmentally friendly alter-
natives in machining fluids. Zhang et  al. (Zhang et  al. 
2012) conducted an assessment of the performance of a 
bio-based cutting fluid, evaluating multiple machining 
characteristics and highlighting the growing interest in 
sustainable machining practices. Lawal et al. (Lawal et al. 
2015) delved into the use of vegetable and mineral oil-in-
water emulsion cutting fluids in the turning of AISI 4340 
steel, concentrating on aspects such as tool wear, surface 
quality, and performance optimization. In addition to 
material-specific studies, researchers have scrutinized 
the influence of cutting fluid properties on machining 
outcomes. Onuoha et al. (Onuoha et al. 1330) specifically 
investigated the impact of emulsifier concentration on the 
properties of oleochemical (chemical compounds derived 
from natural fats and oils) oil-based cutting fluids, under-
scoring the pivotal role of fluid formulation. Ademoh 
et al. (Ademoh et al. 2016) explored the potential of neem 
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seed oil as an alternative cutting fluid, emphasizing the 
ongoing quest for sustainable alternatives in machin-
ing operations. The optimization of cutting parameters 
in conjunction with fluid selection represents another 
crucial facet of machining research. Mir et  al. (Mir and 
Wani 2018) examined the effect of cutting fluids on sur-
face roughness during the turning of AISI 1330 alloy steel 
using the Taguchi method, highlighting the significance 
of parameter optimization. Furthermore, Khan (Khan 
Aug. 2009) conducted investigations into the effects of 
minimum quantity lubrication on turning AISI 9310 alloy 
steel, employing a vegetable oil-based cutting fluid in the 
pursuit of efficient machining practices. These studies 
collectively contribute to the broader understanding of 
sustainable machining practices and the optimization of 
machining parameters for improved performance.

The investigation of unconventional and natural fluids 
for their machining capabilities has extended to diverse 
sources. Agu et  al. (Agu et  al. 2019) conducted a study 
evaluating the impact of blended cutting fluids during 
the turning of die steel D2. This research contributes to 
the expanding body of knowledge on alternative fluids 
in machining applications. Similarly, the study by Osayi 
et  al. (Osayi et  al. 2021) centered on the performance 
evaluation of a cutting fluid derived from rubber seed 
oil in the turning of mild steel, highlighting the explora-
tion of a variety of fluid sources in the pursuit of effective 
machining solutions.

The progress in machining techniques has spurred 
investigations into novel fluid applications. Syafiq et  al. 
(Syafiq et al. 2020) conducted an experimental evaluation 
of  SiO2 nano-cutting fluids in CNC turning of aluminum 
alloy AL319, employing the minimum quantity lubrica-
tion (MQL) technique. This study reflects the integration 
of nanotechnology into machining processes, showcasing 
the pursuit of innovative approaches to enhance machin-
ing efficiency. Moreover, the performance of cutting flu-
ids concerning specific materials has been a subject of 
exploration. Agu et  al. (Agu et  al. 2019) undertook the 
optimization of machining parameters in the turning of 
AISI 304L, employing various oil-based cutting fluids. 
Their focus on surface roughness and material removal 
rate underscores the importance of tailoring cutting fluid 

applications to specific materials, demonstrating a tar-
geted approach to improving machining outcomes.

The presented work contributes to a comprehensive 
understanding of the influence of cutting fluids on vari-
ous machining parameters and outcomes. From the 
assessment of conventional fluids to the exploration of 
sustainable and nanotechnology-enhanced options, these 
studies shed light on the complexities and potentials of 
cutting fluid applications in modern machining practices. 
As the field continues to evolve, research efforts in this 
area will contribute to the development of more efficient 
and environmentally friendly machining techniques.

Experimental work
Test method
AISI4140 steel (EN19) alloy with a thickness of 20  mm 
is used as a workpiece material. Machine specifica-
tions, material properties, and constant parameters 
are mentioned in Table  1. Machining operations were 
performed on an AISI4140 (EN19) steel block meas-
uring 100  mm × 100  mm × 20  mm using a Bharat Fritz 
Werner Limited machine. The cutting inserts employed 
were APMT1604 ZCCCT YBG205/202 Grade with a 
rhombic shape, sharp and honed cutting edges, and 11° 
relief angle. The experimental parameters were organ-
ized using the Taguchi L9 orthogonal array (OA) design, 
facilitating efficient experimentation with three param-
eters and three levels. The chosen parameters were cut-
ting speed (355, 500, 710) in rpm, depth of cut (0.5, 1, 
1.5) in mm, respectively, and coolant type (neem oil with 
graphene, normal coolant, dry). Different coolants were 
employed, namely neem oil with graphene nanoparticle, 
dry (no coolant), and SERVOCUT S soluble cutting oil. 
Machining outcomes were evaluated using a “MITU-
TOYO” SJ301 model surface roughness tester, consider-
ing three quality characteristics for each experiment. The 
study aimed to establish the optimum operating condi-
tions through signal-to-noise ratio (SNR) analysis, evalu-
ate the influence of individual parameters using ANOVA, 
and develop linear regression models for two character-
istics over the three parameters. The cutting tool moves 
across the normal to the surface of the workpiece. The 
tool followed a straight (linear) trajectory. The amount of 

Table 1 Machine specifications and material properties

Workpiece material and dimensions AISI4140 (EN19) steel block (100 mm × 100 mm × 20 mm)

Cutting inserts APMT1604 ZCCCT YBG205/202 Grade

Working insert tool geometry Shape: 80° rhombic, sharp, and honed cutting edge and 11° relief angle

Environments and coolants used Neem oil with graphene nanoparticle, dry (no coolant), SERVOCUT S 
soluble cutting oil

Surface roughness tester “MITUTOYO” make SJ301 model



Page 4 of 13Jadhav and Sahai  J Mater. Sci: Mater Eng.           (2024) 19:13 

material removed by each tooth of the cutter in one revo-
lution is determined by the feed per tooth. The feed per 
tooth used in this research is 40 mm/min. This compre-
hensive experimental setup employed (Fig.  1) industry-
standard tools and methodologies to ensure reliable and 
meaningful results.

Taguchi and design of experiments
Taguchi method
The design of experiments (DOE) is a systematic 
approach employed to investigate conditions where a 
response is subject to variation based on one or more 
independent parameters. This method involves meticu-
lously defining and exploring all conceivable situations 
within a test that encompasses multiple factors. The key 
elements of DOE include planning the experiment to 
ensure suitable data for analysis, as well as determining 
and establishing optimal conditions while evaluating the 
impact of individual factors. Both DOE and the statisti-
cal analysis components play integral roles in addressing 
any experimental problem. Understanding the crucial 
factors that demand special attention, whether for con-
trol or optimization of system performance, is impera-
tive. In the present study, Taguchi’s L9 orthogonal array 
is employed, featuring three parameters each with three 
levels. For every experiment conducted, three distinct 
quality characteristics are measured. The culmination 
of these experiments is subjected to thorough analysis 
to ascertain the optimal operating conditions through 
signal-to-noise ratio (SNR) analysis. Simultaneously, the 
influence of individual parameters is assessed using sta-
tistical tools such as analysis of variance (ANOVA) and 
linear regression analysis. These analytical techniques 

help discern the most dominant parameters, providing 
valuable insights into the intricacies of the experimental 
system. The findings derived from this study contribute 
to a comprehensive understanding of the system’s behav-
ior and guide decisions aimed at enhancing performance 
or maintaining control in a diverse array of scenarios.

Following the principles of the orthogonal array, a 
series of experiments were conducted, yielding outcomes 
for various combinations. The analysis of the measured 
results was carried out using the commercial software 
MINITAB 17, a tool widely employed in design of experi-
ments (DOE) applications. To assess the qualities under 
consideration, the experimental data were converted into 
signal-to-noise ratios (SNR). This conversion allows for 
a comprehensive examination of the impact of control 
factors, such as load, sliding speed, and distance, on the 
wear rate. The SNR responses were employed to scruti-
nize and understand the influence of these control fac-
tors on the wear rate. The response tables generated from 
these analyses provide a ranking of process parameters 
based on SNR derived from wear rate observations. This 
ranking facilitates the identification of critical factors and 
their relative significance in the experimental setup. In 
order to further refine the analysis, experimental obser-
vations were subjected to transformation into SNR. This 
transformation involved the calculation of logarithmic 
functions, converting the observed loss function into a 
more manageable and informative format. This approach 
enhances the precision and clarity of the findings, con-
tributing to a more nuanced understanding of the experi-
mental outcomes.

(1)Higher is better characteristic : SNR (η) = −10log1/n[�y2]

Fig. 1 Experimental milling setup
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where “n” is the number of observations and “y” is the 
observed data.

(2)Lower is better characteristic : SNR (η) = −10log1/n[�y2]

Process parameters levels
The experimental design was conducted utilizing the 
principles of design of experiments (DOE) through Tagu-
chi analysis. Table  2 delineates the parameters consid-
ered for the study along with their corresponding levels. 
In Table  3, the Taguchi orthogonal L9  (32) array is pre-
sented, outlining the configuration for a set of 9 experi-
ments. These arrays are systematically designed to ensure 
a comprehensive exploration of the parameter space, 
allowing for a robust analysis of the factors under investi-
gation (Fig. 2).

The selection of the range for each controllable param-
eter was determined through preliminary experiments, 
as detailed in Table  2. To streamline the experimental 
process and minimize costs, we employed the Taguchi L9 
orthogonal array (OA) design. This design choice is effec-
tive in reducing both effort and the overall expense asso-
ciated with experimentation. For evaluating the surface 
roughness, a “MITUTOYO” SJ301 model surface rough-
ness tester was utilized in accordance with ISO 4287–
1997 norms. The arithmetic mean surface roughness 
(Ra) of the machined surface was calculated using Eq. (3), 
which defines Ra as the arithmetic mean of the absolute 
deviations in the roughness profile from the center line 
over the total length. To ensure precision, the Ra value 
was determined based on the average of five measure-
ments taken from each machined surface. Additionally, a 
cut-off length of 4 mm was used for each Ra value. The 
results of the uncertainty analysis for the surface rough-
ness measurements are presented in Table 3.

Table 2 Factors and their levels wear test

Sr. No Input parameters Levels

1 Cutting speed (rpm) 355 500 710

2 Depth of cut (mm) 0.5 1 1.5

3 Coolant type Neem oil 
with graphene 
(1)

Normal 
coolant (2)

Dry (3)

Table 3 Taguchi’s L9 orthogonal array design

Experiment 
No

Parameters and their levels

Cutting 
speed 
(rpm)

Depth of 
cut (mm)

Coolant type Surface 
roughness

1 355 0.5 1 2.9

2 355 1 2 3.3

3 355 1.5 3 4.8

4 500 0.5 2 2.9

5 500 1 3 3.2

6 500 1.5 1 2.3

7 710 0.5 3 4.8

8 710 1 1 1.9

9 710 1.5 2 3.1

Fig. 2 Main effect plot for means
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SNR and ANOVA
In every experimental trial, an evaluation of surface 
roughness is conducted, with the concurrent determina-
tion of the signal-to-noise ratio. The surface roughness 
is designated as the response variable, while the pro-
cess parameters include cutting speed, depth of cut, and 
coolant type. Adhering to the principles of the Taguchi 
method, a decision is made to adopt the “smaller is bet-
ter” criterion for the ratio assessment. The objective in 
this context is to enhance the surface roughness, posi-
tioning it as a minimized parameter. Mathematically, this 
is expressed as follows:

The investigation into signal-to-noise ratios has yielded 
valuable insights, revealing that the delta value is nota-
bly higher in the coolant type. This observation signifies 
the coolant type as the predominant influencing fac-
tor in the milling process. Following closely in influence 
are the cutting speed and depth of cut. The utilization of 
rank analysis aids in discerning the hierarchical impact 
of different factors on the machining process. Notably, 
the coolant type holds the top rank (rank 1), highlight-
ing its paramount influence. Subsequently, cutting speeds 
and depth of cut secure ranks 2 and 3, respectively. This 
ranking structure facilitates the identification of the most 
influential factors in the milling process. Moreover, the 
obtained data, as presented in Table 4, establishes a con-
sistent pattern, with coolant type, cutting speeds, and 
depth of cut maintaining their respective ranks. Fur-
ther insights are revealed in Table 5, which displays the 
responses in terms of means (predicted values). This 
comprehensive analysis provides a clear understanding of 
the relative importance of different factors in the context 
of the hydroforming process.

Results and discussion
The investigation into surface roughness relies on the uti-
lization of the L9  (32) orthogonal array, as delineated in 
Table  1, to serve as the foundational framework for the 

(3)S/N = −10log
1

n

n

i=1

y2i

analysis. In this study, the influential factors under con-
sideration encompass cutting speed, depth of cut, and 
coolant type. The response parameters being scrutinized 
are surface roughness generated during the machin-
ing process. The primary objective of the experimental 
design is to discern the key parameters and their interac-
tions that significantly influence surface roughness. The 
orchestrated tests have been systematically devised using 
the orthogonal array methodology. The overarching aim 
is to establish a coherent relationship elucidating the 
impacts of cutting speed, depth of cut, and coolant type 
on the surface roughness test, ultimately striving to iden-
tify the optimal conditions that yield the lowest surface 
roughness.

Influence on surface roughness
The wear rate is predominantly influenced by the type of 
coolant, with statistical significance observed in the SNR 
for control parameters. Figures 3 and 4 depict the impact 
of process factors on surface roughness and SNR means. 
Through an analysis of test results using the SNR, opti-
mal conditions leading to enhanced surface roughness 
have been identified.

ANOVA for signal o noise (S/R) ratio
ANOVA, or analysis of variance, serves as a valuable 
tool for interpreting and analyzing the variances among 
group means within experimental data. This statistical 
method facilitates informed decision-making by assess-
ing the significance of different factors. In the context 
of the present experiment, the factors under considera-
tion include cutting speed, depth of cut, and coolant 
type, with the response variable being the signal-to-
noise ratio (SNR) (refer to Fig. 4). Table 6 presents the 
results obtained through ANOVA, offering insights 
into the contributions of each factor to the variability 
in the SNR. Notably, the percentage contribution analy-
sis reveals that coolant type stands out with the high-
est impact, registering a substantial 12.71 according to 
the F-test score. On the other end of the spectrum, the 

Table 4 Response for signal-to-noise ratios (smaller is better)

Level Cutting speeds 
(rpm)

Depth of cut (mm) Coolant type

1  − 11.081  − 10.707  − 7.224

2  − 8.733  − 8.683  − 9.815

3  − 9.676  − 10.100  − 12.451

Delta 2.348 2.024 5.227

Rank 2 3 1

Table 5 Response for means (predicted values)

Level Cutting speeds 
(rpm)

Depth of cut 
(mm)

Coolant type

1 3.667 3.533 2.333

2 2.767 2.800 3.100

3 3.267 3.367 4.267

Delta 0.900 0.733 1.933

Rank 2 3 1
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depth of cut exhibits the lowest contribution, amount-
ing to a modest 0.09 as per the F-test score. From the 
model summary in Table  7, it observed that the value 
of R-sq is 72.44% which indicates this model can be 
considered to predict the optimal process parameter 
combination. Equation  (4) encapsulates the optimal 
conditions derived from regression analysis, delineat-
ing the parameters that yield improved surface rough-
ness. This equation represents the culmination of the 
experimental findings, pinpointing the specific values 
of cutting speed, depth of cut, and coolant type that 

Fig. 3 Main effect plot for SNR

Fig. 4 Standard deviation plot

Table 6 Analysis of variance (ANOVA) for SNR (analysis of 
variance)

Source DF Adj SS Adj MS F-value P-value

Regression 3 5.79511 1.93170 4.38 0.073

Cutting speeds 1 0.14678 0.14678 0.33 0.589

Depth of cut 1 0.04167 0.04167 0.09 0.771

Coolant type 1 5.60667 5.60667 12.71 0.016

Error 5 2.20489 0.44098

Total 8 8.00000
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result in an enhanced SNR. Through this comprehen-
sive approach, the study not only identifies the most 
influential factors affecting surface roughness but also 
provides a practical framework for achieving optimal 
outcomes in machining processes.

Effect on surface roughness due to cutting speeds, depth 
of cut, and coolant type
The primary effect plot of means serves as a visual 
encapsulation of the distinct impact of cutting speed, 
depth of cut, and coolant type on the performance of 
machining. This graphical representation effectively 
communicates the contribution of each factor, pro-
viding a lucid overview of their influence on crucial 
parameters such as surface roughness. The succinct 
yet comprehensive nature of this representation plays a 
pivotal role in understanding the key drivers that shape 
the outcomes of the Taguchi analysis within the realm 
of environmentally conscious machining of AISI4140 
steel. The Taguchi analysis was meticulously conducted 
for surface roughness, with Figs. 2 and 3 presenting the 
results. These figures specifically highlight the impact 
of various machining parameters on surface roughness. 
Notably, in Fig.  3, coolant type emerged as the most 
influential factor in determining surface roughness. The 
relationship between depth of cut and surface rough-
ness was found to be non-linear in the current study, 
adding a nuanced dimension to the understanding of 
these machining dynamics. Furthermore, the main 
effect plot of signal-to-noise ratios (SNR) offers a con-
cise and visually informative representation of how cut-
ting speed, depth of cut, and coolant type collectively 
influence machining quality. Through the evaluation 
of SNR and surface roughness, this plot elucidates the 
optimal settings for machining parameters. It stands 
as an indispensable tool in the Taguchi analysis, pro-
viding valuable insights into the factors that signifi-
cantly impact the overall performance and efficiency of 
AISI4140 steel machining processes.

Regression model for surface roughness for cutting 
speeds, depth of cut, and coolant type
The regression model (Eq.  4) for surface roughness 
against cutting speeds, depth of cut, and coolant type 

(4)Surface Roughness = 1.92−0.00088 Cutting speeds−0.167 Depth of cut+0.967 Coolant type

provides a quantitative framework to predict surface 
quality. It delineates the intricate relationship between 
machining parameters and surface roughness, ena-
bling precise optimization. This model, a key outcome 
of Taguchi analysis, offers a systematic approach to 
enhance machining efficiency for AISI4140 steel. By 
elucidating the impact of each variable, it facilitates 
informed decisions for achieving superior surface fin-
ishes in metal cutting operations. Examining the residual 
plot, illustrated in Fig. 5, provides insights into the suit-
ability of a linear model for the given data. The vertical 

dispersion of data points around the zero-centered hori-
zontal line serves as an indicator of the appropriateness 
of the linear model. When the residuals exhibit a ran-
dom and uniform spread around this line, it suggests a 
favorable fit of the linear model to the data, as exempli-
fied in Fig. 6. Notably, the absence of significant devia-
tions between the residual line and the component line 
signifies a linear relationship between the predictor and 
the dependent variable.

For a more specific context, Fig. 7 displays the result-
ant residual plots concerning surface roughness. These 
visual representations offer a comprehensive view of the 
relationship between the predictor and the dependent 
variable, aiding in the assessment of the linear model’s 
adequacy for the dataset at hand. Regression analysis 
was employed to discern the connection between the 
response variable Ra and the input factors. Equation (4) 
delineates the association between Ra and the param-
eters of cutting speed, depth of cut, and the type of cool-
ant used in the process.

Contour plot of cutting speeds and surface roughness 
versus depth of cut
Contour plots serve as a valuable tool for examin-
ing the interplay between a response variable and two 
control variables, providing a visual representation of 
discrete contours for predicted response variables. In 
Fig.  8, these contour plots elucidate the relationship 
between process parameters and the surface roughness 
value. Upon closer inspection of Fig.  8a, it becomes 
evident that an elevated cutting speed corresponds 
to a heightened surface roughness value. Conversely, 
the plot reveals that lower surface roughness can be 
achieved at higher levels of cutting speed and depth 
of cut. This observation underscores the inverse cor-
relation between cutting speed and surface roughness, 
indicating that a high cutting speed tends to result in 
increased surface roughness. Furthermore, Fig.  8b 

Table 7 Model summary

S R-sq R-sq( adj) R-sq (pred)

0.664062 72.44% 55.90% 0.00%
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underscores the impact of neem oil with graphene cut-
ting fluid on the surface roughness value, demonstrat-
ing a significant reduction compared to other cooling 
environments. This suggests that the specified cutting 
fluid condition plays a crucial role in minimizing sur-
face roughness during the machining process. The utili-
zation of neem oil with graphene cutting fluid emerges 
as an effective strategy for achieving superior surface 
quality in comparison to alternative cooling conditions, 
as illustrated in the contour plot.

Multi‑layer ANN structure
A MATLAB-generated surface roughness graphs offer 
a nuanced perspective on the machined surface qual-
ity across various datasets, providing a comprehensive 
evaluation of the efficacy of the machining process. Each 
set of data—training, validation, and test—along with the 
overall trend, contributes unique insights into the impact 
of cutting parameters on surface finish. The MATLAB-
generated surface roughness graphs are invaluable tools 
to optimize machining parameters. Identification of 

Fig. 5 Residual plots for SNR

Fig. 6 Residual plots for means
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optimal cutting speeds, depths of cut, and coolant types 
becomes evident through the trends observed in the 
graphs. Researchers and practitioners can leverage this 
information to strike a balance between material removal 
rates and achieving the desired surface finish. By com-
paring the predicted surface roughness with the actual 
outcomes, the graphs instill confidence in the predictive 
model. A close alignment between predicted and actual 
values underscores the model’s accuracy and applicabil-
ity in guiding machining operations for superior sur-
face quality. In summary, the surface roughness graphs 
derived in MATLAB ANN analysis as shown in Fig.  9 
serve as dynamic visual aids, guiding the understand-
ing, validation, and optimization of machining processes. 
Their role in enhancing the predictive capacity of models 

and facilitating real-world machining improvements is 
pivotal for advancing precision manufacturing meth-
odologies. Regression R-values measure the correlation 
between outputs and targets. An R-value of 1 means a 
close relationship, and 0 a random relationship. Mean 
squared error is the average squared difference between 
outputs and targets. Lower values are better. Zero means 
no error.

MATLAB surface roughness histogram
MATLAB-generated surface roughness histogram 
(Fig. 10) provides a concise and insightful representation 
of the distribution of surface roughness values, offering 
a statistical overview of the machining outcomes. This 
histogram serves as a robust tool for understanding the 

Fig. 7 Residual plots for surface roughness

Fig. 8 Contour plot for surface roughness for a cutting speed, depth of cut and b coolant type, DOC
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Fig. 9 ANN regression plots for training dataset, validation dataset, test dataset, and overall dataset

Fig. 10 MATLAB surface roughness histogram
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variability in surface finish and elucidating key charac-
teristics of the machined components. MATLAB-gen-
erated surface roughness histogram serves as a guide 
for optimization efforts. Identifying the desired range of 
surface finish values and correlating them with specific 
machining parameters becomes intuitive through this 
histogram. Researchers can leverage this information to 
fine-tune cutting speeds, depths of cut, and coolant types 
to achieve the optimal balance between material removal 
rates and surface quality. In summary, the MATLAB sur-
face roughness histogram is a pivotal analytical tool that 
goes beyond raw data, providing a visual and quantitative 
foundation for understanding, optimizing, and control-
ling surface finish in machining processes. Its integration 
into the research framework contributes significantly to 
the comprehensive analysis of machining outcomes.

Model comparison
The prediction results of the modified regression model 
are compared with ANN to elevate precision in surface 
roughness prediction for turning AISI4140 steel. The pre-
dictive capabilities of modified regression models and 
ANN structures are undertaken in the context of sur-
face roughness (Ra) estimation during the milling pro-
cess of AISI4140 steel. The study employs carbide inserts 
and explores how these models contribute to precision 
machining practices by integrating cutting parameters 
(depth of cut, cutting fluid, spindle speed) as inputs with 
Ra as the output. The determination of a single hidden 
layer’s suitable number of neurons involved a trial-and-
error approach, ensuring optimal network architecture. 
Training employed the Levenberg–Marquardt (LM) 
learning algorithm with a tangent sigmoid function. A 
comprehensive dataset of 9 sets, with 50% utilized for 
training, 25% for validation, and the remaining 25% for 
testing, underscored the diversity and robustness of the 
models. Remarkable accuracy was achieved, with over-
all R2 value of 86.86% (Table  8). Comparing prediction 
results with modified regression models, the ANN struc-
tures demonstrated superior performance, surpassing 
85% accuracy in terms of R2 values for training. Both 
models exhibited robust predictive capabilities, estab-
lishing their efficacy for real-time process control and 
contributing significantly to the precision machining of 
AISI4140 steel with carbide inserts. This analysis sheds 

light on the potential of ANN structures to elevate sur-
face roughness predictions in turning operations.

This comparison highlights the ANN’s superior perfor-
mance in predicting surface roughness compared to the 
regression model’s prediction of the SNR, emphasizing 
its potential for enhancing precision in machining opera-
tions, particularly in predicting surface quality in turning 
AISI4140 steel.

Conclusion
The primary aim of this study was to investigate the 
impact of cutting fluids on diverse machining param-
eters and their resultant effects. The focus was spe-
cifically on improving the parameters related to surface 
roughness during face milling of EN19 through Taguchi 
analysis. The conclusions drawn from the study provide 
valuable insights into optimizing machining processes 
for enhanced surface finish. In the pursuit of simulta-
neously optimizing multiple responses, it was revealed 
that cutting fluid played a pivotal role, emerging as the 
most influential factor, closely followed by speed and 
depth of cut. The intricate balance between these factors 
was found to significantly impact the surface roughness 
in EN19 face milling. To further enhance the predictive 
capabilities in this context, the study introduced regres-
sion and ANN models. These models were designed to 
capture the complex relationships between the machin-
ing parameters and surface roughness. However, it is 
important to note that these models exhibited varying 
degrees of fitness. In order to identify the most suitable 
model for accurate Ra estimation, a thorough analysis of 
the estimated results and associated error investigations 
was carried out. This meticulous approach ensures the 
selection of the most reliable model for predicting sur-
face roughness in the machining of EN19. By scrutinizing 
the estimated results and errors, the study aimed to pro-
vide a robust framework for choosing the optimal model, 
thereby enhancing the precision and reliability of surface 
roughness predictions in the machining process.

The research proposes the utilization of an ANN as a 
predictive tool to evaluate established regression models. 
This ANN undergoes training and testing with a combi-
nation of cutting and response parameters. Remarkably 
high R2 values, reaching 99.998%, signify a robust asso-
ciation and an excellent fit. Comparative analysis reveals 

Table 8 Comparison table between the regression model and ANN

Model Statistical method Factors considered Response variable Performance metric Accuracy (%)

Regression model Ordinary least squares 
(OLS)

Cutting speed, depth 
of cut, coolant type

Signal-to-noise ratio (SNR) R-squared (R2) 72.44

Artificial neural network 
(ANN)

Levenberg–Marquardt 
algorithm

Depth of cut, cutting fluid, 
spindle speed

Surface roughness (Ra) R-squared (R2) 86.86
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that the ANN models exhibit superior predictive capabil-
ities when contrasted with traditional regression models, 
as evidenced by improved R2 values.

To validate the efficacy of the developed ANN models, 
independent data is employed, affirming their effective-
ness in estimating in-process Ra. Notably, the modified 
regression model achieves Ra estimations exceeding 90%, 
while the ANN demonstrates even more accurate esti-
mations, surpassing 98% based on R2 values. This leads 
to the conclusion that the ANN serves as a superior pre-
dictive tool for the in-process monitoring of Ra for both 
types of inserts. The findings underscore the potential of 
such predictions for real-time control of the manufactur-
ing process, ensuring the attainment of the desired Ra.

This paper presents a comprehensive analysis using 
regression and artificial neural network (ANN) models 
to predict surface roughness (Ra) during the turning pro-
cess of EN19 steel. The proposed ANN tool demonstrates 
superior predictive capabilities compared to traditional 
regression models, as validated with independent data. 
The results confirm the reliability of the developed ANN 
models for accurate in-process Ra estimation, providing 
valuable contributions to precision machining practices.
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