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Abstract 

In this paper, a shape memory alloy (SMA), NiTiNOL, zigzag sheet is used and experimental method is developed 
using programmable power supply, laser displacement sensor, and K-type thermocouple to investigate actuation 
and thermo-mechanical behavior of trained SMA zigzag sheet under three different weights, 2.5 N, 3.5 N, and 4.5 
N, along with three distinct voltage levels 2.0 V, 3.0 V, and 4.0 V and hysteresis curves are comprehensively exam-
ined to get optimum value of load and voltage to achieve better life cycle and actuation as per the requirement 
of the design. The displacement and temperature data of the zigzag sheet is recorded for every 200 ms for the entire 
operating life, utilizing heating and cooling processes, of the zigzag sheet and the value of constant displacement 
for each cycle is optimized which can be used for the development of microelectromechanical systems (MEMS).
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Introduction
Over the past few decades, there have been extensive 
discussions regarding the rapid responsiveness of shape 
memory alloys (SMAs) (Lagoudas 2008; Sun et  al. 2012; 
Namazu et  al. 2006; Basit et  al. 2013; Takashima et  al. 
2014; Pimpin et  al. 2004; Pelrine et  al. 1998; Chen and 
Liu 2013; Jayaram et al. 2018; Grunwald and Olabi 2008; 
Hong 2013). NiTi has gained considerable attention 
among researchers due to its unique properties, such as 
the shape memory effect, super-elasticity, high damping 
capacity, substantial kinetic output, noise-free operation, 

and the highest actuation force compared to various other 
actuators (Yuan et  al. 2017; Mohd Jani et  al. 2016; Patil 
and Song 2017; Sun et al. 2016; Moiseev 2005; Teh 2008; 
Bale et  al. 2023; Cao et  al. 2023; Shape memory alloys - 
new advances [working title]. 2023; Mehta et  al. 2024; 
Gangwar et  al. 2023; Mobarak et  al. 2023; Nithyanandh 
et  al. 2023; Jain et  al. 2022; Nath and Kumar 2021; Kim 
et al. 2023; Chaudhary et al. 2024; Dzogbewu and Johan 
2024). In this chapter, a unique experimental setup has 
been developed to estimate the life cycle of SMAs through 
electrical actuation. The hysteresis response of NiTi is 
intricately linked to both the applied load and tempera-
ture. The estimation of the life cycle of SMA involves the 
utilization of heating and cooling processes, with Joule 
heating serving a crucial role in SMA actuation. The acti-
vation of SMA material occurs through Joule heating and 
is suggested for diverse applications, as elaborated upon 
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below. The experimental parameters that have undergone 
variation include voltage, load, and displacement.

Experimental setup and experimentation

1.	 Experimental setup: A test setup was created to 
explore the thermo-mechanical responses induced 
by Joule heating in an SMA actuator. In the course of 
the life cycle analysis, the SMA actuator underwent 
repeated cycles of heating and cooling until failure 
was evident. The investigation was complemented by 
employing various characterization techniques to vali-
date the observations. The thermo-mechanical fatigue 
of the sheet was evident, and as the cycles increased, 
it became apparent that the fabricated trained SMA 
sheet experienced inelastic deformation, leading to 
their inability to return to their original shape. SMA 
fatigue behavior is typically assessed through three 
distinct approaches (Chang and Read 1951). Firstly, 
fatigue-induced fractures can occur due to stress or 
strain cycling at a consistent temperature. Secondly, 
changes in physical, mechanical, and memory proper-
ties may manifest through pure thermal cycling across 
the transformation region. Thirdly, a combination of 
thermal cycling through the transformation region 
and constant stress or strain loading can lead to varia-
tions in physical, mechanical, and memory properties. 
The third type of fatigue behavior, prevalent in many 
mechanical applications, is the focus of consideration 
in this context. To address this, an experimental setup 
was devised and implemented to collect data from the 
initial stage to the point of failure. Figure 1 illustrates 
the schematic overview and actual photographs of the 
experimental arrangement.

2.	 Experimentation: The setup employed a laser dis-
placement sensor (LDS), a K-type thermocouple, 

programmable power supply (PPS), an external 
weight applied using a pulley system, and the fabri-
cated NiTi SMA zigzag sheet. The NiTi SMA zigzag 
sheet was acquired to explore the life characteristics 
of the zigzag sheet, and its specifications for the cur-
rent case study are detailed in Table 1.

The zigzag sheet, which is one-way trained, contracts 
upon actuation, specifically the application of voltage. To 
maintain the extended position, an external load is applied 
to the spring. The programmable power supply (PPS) not 
only delivers the specific energy required for the phase 
transformation of the zigzag sheet but also plays a crucial 
role in controlling the heating and cooling cycles of the zig-
zag sheet. At the experiment’s outset, a weight was applied 
to the sheet to maintain its extended position. Subsequently, 
a voltage (Vc) was applied to the sheet through the pro-
grammable power supply (PPS). The sheet, upon receiving 
the voltage, recovered its original length against gravity by 
lifting the weights. Following the recovery phase, the voltage 
was cut off, allowing the sheet to cool at room temperature. 
During the cooling process, external weight was applied 
to the sheet, exerting force for the sheet to revert to its 
deformed shape. Iterative steps were undertaken to calcu-
late the time required for the heating and cooling cycles of 
the SMA zigzag sheet. The heating and cooling phases of the 
zigzag sheet collectively constitute the actuation. The cumu-
lative actuation over one cycle is essential for measuring the 
life cycle of the zigzag sheet. The reduction in elongation 
observed over the number of cycles serves as an indicator 
of failure. The elongation of the zigzag sheet was quantified 
using the laser displacement sensor (LDS), while a K-type 
thermocouple was affixed to measure the temperature dur-
ing both actuation and the release of the zigzag sheet. For 
actuation analysis, conducting experiments on a sheet with 
consistent mechanical properties involved the application of 

Fig. 1  Line diagram and experimental setup for SMA actuation for Joule heating
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various voltage waveforms. Throughout each experiment, 
data on sheet displacement and temperature was meticu-
lously recorded at intervals of 200 ms, spanning the entire 
operational lifespan of the sheet. The investigation into the 
thermo-mechanical behavior was conducted under three 
different weights, namely 2.5 N, 3.5 N, and 4.5 N, along with 
three distinct voltage levels—2.0 V, 3.0 V, and 4.0 V.

The sample underwent scanning electron microscopy 
to analyze alterations in its life cycle in response to vary-
ing weights and voltages (Chouhan et al. 2016).

Result and discussion
For thermo-mechanical behavior (displacement vs. time 
curve) and temperature vs. time curve and for actuation 
behavior, the hysteresis curve at 3 different weights at 2.5 
N, 3.5 N, and 4.5 N at 2 V, 3 V, and 4 V is investigated 
providing a comprehensive depiction of the cyclic behav-
ior under varied loading conditions.

Thermo-mechanical behavior (displacement vs. time 
curve) and temperature vs. time curve at 3 different 

Table 1  One-way trained SMA sheet specifications

Complete length of 
sheet length (l)

Sheet breath (b) Sheet 
thickness (t)

Number of 
zigzag (n)

31.5 mm 2.5 mm 0.5 mm 4.5

Fig. 2  Displacement vs. time at 2.0 V for different weight a for 2.5 N, 3.5 N, and 4.5 N, b temperature vs. time plot for 2.5 N, 3.5 N, and 4.5 N
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Fig. 3  Hysteresis curve for actuation of SMA at 2.0 V and a 2.5 N, b 3.5 N, and c 4.5 N
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Fig. 4  Hysteresis curves for five cycles are depicted at a voltage of 2.0 V under varying loads: a 2.5 N, b 3.5 N, and c 4.5 N
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weights at 2.5 N, 3.5 N, and 4.5 N at 2  V is shown in 
Fig. 2.

In Fig. 3, actuation behavior, the hysteresis curve at 2 V 
is illustrated for different applied weights, specifically 2.5 
N, 3.5 N, and 4.5 N, providing a comprehensive depiction 
of the cyclic behavior under varied loading conditions.

Figure  4 displays hysteresis curves for five cycles at 
a voltage of 2.0 V under different loads (2.5 N, 3.5 N, 
and 4.5 N). It is worth noting that, due to the utiliza-
tion of a zigzag sheet in the test bench, the possibility 
of the sheet behaving in a reversed manner should be 
considered.

In Fig.  5, the thermo-mechanical response of SMA, 
represented by the displacement versus time graph, is 
depicted under varying loads of 2.5 N, 3.5 N, and 4.5 N, 
with an applied voltage of 3.0  V, particularly when the 
zigzag sheet is subjected to loading. Additionally, Fig.  5 
also includes the temperature versus time graph for the 
corresponding cycle. Furthermore, the actuation behav-
ior for a single cycle is illustrated in Fig. 6. In Fig. 7, hys-
teresis curves for five cycles are presented, specifically at 
a voltage of 3.0 V, under identical loading conditions.

When the sheet was activated with a voltage of 4.0  V 
under consistent loading conditions, the displacement 
exhibited a range between 10 and 15  mm. This process 
was iteratively repeated five times, and the correspond-
ing thermo-mechanical behavior and hysteresis curve are 
illustrated in Figs. 8 and 9.

Corresponding temperatures were measured using 
a K-type thermocouple within the range of 30 to 
60  °C. At the 2.5 N weight, the displacement recorded 
was 15.10  mm with a temperature of 54.49  °C, which 
increased to 18.32  mm at 3.5 N with a temperature of 
58.69  °C. The maximum displacement of 21.25 mm was 
achieved at 4.5 N with a corresponding temperature of 
58.93 °C. Time taken for heating and cooling and to attain 

a constant displacement for each cycle, the optimal val-
ues were determined and tabulated as shown in Table 2.

Observing all hysteresis curves, a distinct point of 
intersection is evident in each. Specifically, in Fig. 2, this 
intersection occurs at 12.74  mm, attributed to a phase 
transition. Although imperceptible during the heating 
phase, as the cooling commenced, the transition from 
austenite to martensite became apparent, leading to the 
crossing of curves and the resulting intersection. Plots 
for displacement and time, temperature and time, as well 
as hysteresis curves, are comprehensively presented in 
Figs. 2, 3, 4, 5, 6, 7, 8, and 9. Samples (2.5 N, 2 V and 4.5 
N, 4 V) subjected to five cycles of heating–cooling were 
taken and scanning electron microscopy (SEM) was con-
ducted on samples. The SEM images revealed elongated 
grains, with the black areas representing titanium and 
the gray areas representing nickel as shown in Fig.  10. 
Despite the increase in strength and hardness attributed 
to the elongated grains, it was observed that the higher 
nickel content compared to titanium rendered the alloy 
more brittle and prone to fracture during actuation thus 
decreasing the life cycle.

Conclusion
This paper presented a conducting experiment on a shape 
memory alloy zigzag sheet with consistent mechani-
cal properties involved the application of various volt-
age waveforms. Throughout each experiment, data on 
sheet displacement and temperature was meticulously 
recorded at intervals of 200 ms, spanning the entire oper-
ational lifespan of the sheet under three different weights, 
2.5 N, 3.5 N, and 4.5 N, along with three distinct voltage 
levels—2.0  V, 3.0  V, and 4.0  V. It is found that 2.5 N at 
voltage level 2  V is optimum condition to obtain maxi-
mum life cycle for shape memory alloy zigzag sheet with 
the displacement of 15.10 mm as in this case there is no 

Fig. 5  Displacement vs. time at 3.0 V for different weight a for 2.5 N, 3.5 N, and 4.5 N, b temperature vs. time plot for 2.5 N, 3.5 N, and 4.5 N
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Fig. 6  Hysteresis curve for actuation of SMA at 3.0 V a 2.5 N, b 3.5 N, c 4.5 N
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Fig. 7  Hysteresis curves for five cycles are depicted at a voltage of 3.0 V under varying loads: a 2.5 N, b 3.5 N, and c 4.5 N
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Fig. 8  Hysteresis curve for actuation of SMA at 4.0 V a 2.5 N, b 3.5 N, c 4.5 N
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Fig. 9  Hysteresis curves for five cycles are depicted at a voltage of 3.0 V under varying loads: a 2.5 N, b 3.5 N, and c 4.5 N
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phase change or temperature change at the time of inter-
section. As weight and voltage level is increased, life cycle 
decreases and actuation increases. Result and discussion 
in this work can be used for future references to design 
mechanical device using shape memory alloy zigzag 
sheet. If any device requires higher actuation where life 
cycle is not the priority, it can be achieved with 4.5 N at 
voltage level 4 V.
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