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Abstract 

This study presents a novel and eco-friendly approach for synthesizing silver nanocomposite at room tempera-
ture. The method utilizes chitosan derived from snail (Archachatina marginata) shell waste crosslinked with EDTA 
as a combined reducing and capping agent. The existence of silver nanoparticles in the composite was confirmed 
by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy 
dispersive X-ray (EDX), energy dispersive X-ray fluorescence (EDXRF) and thermogravimetric analysis (TGA). The TEM, 
SEM, XRD, and analyses revealed that the silver nanoparticle has a face-centered cubic structure with an average 
size of 45.30 nm respectively. EDX and EDXRF showed characteristic silver peaks confirming the formation of silver 
nanoparticles in the composite while TGA indicated that silver nanoparticles contributed to good thermal stability 
of the composite. The formation of silver nanoparticles was indicated by a brown color transformation and an ultra-
violet visible (UV Vis) absorption peak at 435 nm. The synthesized nanocomposite demonstrated promising antibacte-
rial activity against both Staphylococcus saprophyticus DSM 18669 and Escherichia coli O157 strains, with S. saprophyti-
cus showing higher susceptibility. This highlights the potential of chitosan-EDTA silver nanocomposites as alternative 
antimicrobial agents.

Keywords Silver nanocomposite, Antimicrobial resistance, Nanoparticle, Face-centered cubical, Gram-positive, Gram-
negative

Introduction
Nanotechnology deals with the manipulation of materials 
at the nanometer scale, with potential applications across 
various fields like consumer products, biomaterials, and 
energy generation (Verstraete et al. 2009; Hajialyan et al. 
2018; Tahvilian et al. 2019).

Several methods exist for nanoparticle production, 
including chemical, physical, and biological approaches 
(Khwannimit et  al. 2019). The chemical approach offers 

a rapid synthesis of large quantities but necessitates 
capping agents to control particle size (Dhaka et  al. 
2023). However, this method often relies on hazardous 
chemicals and generates environmentally unfriendly 
byproducts.

Consequently, there is a growing interest in develop-
ing biological synthesis strategies that minimize reliance 
on toxic substances, aiming for an eco-friendly approach 
to nanoparticle production. This rising demand for sus-
tainable solutions has fuelled the development of “green 
nanotechnology” (Krithiga et al. 2015).

Baran and colleagues (2023) asserted that the escala-
tion of antibiotic resistance in bacteria, attributed to 
either extensive utilization or improper dispensation, 
is perceived as an indicator of the prospective redun-
dancy of presently predominant antibiotics. Silver’s 
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antimicrobial activity is well-established and it functions 
as a potent antibacterial agent; nevertheless, the pre-
cise mechanism and mode of action remain ambiguous 
(Sharma and Yngard 2009). Silver nanoparticles exhibit 
high antibacterial activity due to their high surface-to-
volume ratio, which facilitates maximum contact with 
the environment (Krutyakov et  al. 2008). The high sur-
face area of nanosilver is a crucial factor in its excep-
tional antimicrobial activity. With a larger surface area, 
nanosilver has more contact points with microorgan-
isms, facilitating the transfer of silver ions and amplify-
ing the antimicrobial effect (Liu et  al. 2020a, b). This 
increased surface area also enables the release of more 
silver ions, which are responsible for the antimicrobial 
activity (Hadrup and Lam 2019). Furthermore, the high 
surface area of nanosilver allows it to penetrate deeper 
into biofilms, reaching and killing more microorganisms 
(Kvitek et al. 2019). The high surface energy of nanosilver 
also increases its reactivity, enabling it to more efficiently 
interact with and damage microbial cell membranes (Liu 
et  al. 2020a, b). In summary, the high surface area of 
nanosilver is a key contributor to its high antimicrobial 
activity, enabling increased interaction with microorgan-
isms, enhanced release of silver ions, improved penetra-
tion into biofilms, and increased reactivity. It is vital to 
manage and observe silver nanoparticles’ size, shape, and 
stability in such applications (Kaviya et al. 2011).

Chitosan, a linear polysaccharide, is found in the shells 
of crustaceans and mollusks. It is formed through the 
process of deacetylation of chitin (Mohammed et  al. 
2017). Chitosan is used in biomedicine due to its biocom-
patibility, low allergenicity, biodegradability, and non-
toxicity (Wang et al. 2020; Wei et al. 2020). The extensive 
applications of chitosan in textiles, cosmetics, water 
treatment, and food processing industries have continued 
to garner significant interest (Rinaudo 2006). The pres-
ence of numerous primary amino groups enhances its 
hydrophilic properties, allowing it to interact effectively 
with nanoparticles, polymers, cells, and drugs in aqueous 
solutions as binders and stabilizers (Almalik et al. 2017; 
Mirzazadeh, et al. 2020).

Chitosan and nanosilver are both known for their anti-
microbial properties, but the nano nature of silver can be 
an added superiority over chitosan in several ways. Chi-
tosan exhibits antimicrobial activity against a wide range 
of bacteria, fungi, and viruses (Kumar et al. 2020), works 
by disrupting cell membranes, inhibiting protein syn-
thesis, and activating immune responses (Sarwar et  al. 
2020), and is generally considered safe and biocompatible 
(Kumar et al. 2020).

In contrast, nano-sized silver particles have a larger 
surface area-to-volume ratio, allowing for more effi-
cient interaction with microorganisms and enhanced 

antimicrobial activity (Liu et  al. 2020a, b). Additionally, 
nanosilver can penetrate deeper into biofilms and cellu-
lar structures, making it more effective against stubborn 
infections (Kvitek et al. 2019). Its high surface energy and 
reactivity enable it to release silver ions more efficiently, 
amplifying its antimicrobial effects (Hadrup and Lam 
2019).

Nanosilver can also be designed to target specific 
microorganisms or sites of infection, reducing harm to 
beneficial microflora and host tissues (Kumar et al. 2020). 
Combining nanosilver with other antimicrobial agents, 
like chitosan, may produce synergistic effects, leading to 
enhanced efficacy and reduced development of resistance 
(Khan et  al. 2019). Furthermore, nanosilver can be sta-
bilized and functionalized to maintain its antimicrobial 
activity over time, even in harsh environments (Sarwar 
et al. 2020). Its multimodal mechanisms of action, includ-
ing membrane disruption, protein inhibition, and DNA 
damage, make it more difficult for microorganisms to 
develop resistance (Liu et al. 2020a, b).

However, it is essential to consider the potential risks 
and challenges associated with nanosilver, such as toxic-
ity to human cells and the environment, the potential for 
bioaccumulation and environmental persistence, and the 
need for careful design, synthesis, and functionalization 
to ensure safety and efficacy.

Green synthesis methods utilize various biomol-
ecules like vitamins, yeasts, and plant components for 
nanoparticle production (Baran et  al. 2021; Atalar et  al. 
2022). Ethylenediaminetetraacetic acid (EDTA), with 
its metal-binding abilities through carboxylic acid and 
amine groups, acts as a suitable crosslinker for chitosan. 
This crosslinking between functional groups in chitosan 
and EDTA leads to a stable, crosslinked polyelectrolyte 
complex structure. The addition of EDTA enhances the 
adsorption capacity of the complex and improves its sta-
bility in acidic environments (Putria et  al. 2019; Costa 
et  al. 2020). The addition of EDTA (ethylenediamine-
tetraacetic acid) significantly enhances the adsorption 
capacity of metal complexes, such as chitosan-EDTA-
silver. EDTA forms stable chelates with metal ions, pre-
venting precipitation and increasing their availability 
for adsorption (Liu et  al. 2020a, b). Additionally, EDTA 
improves metal ion solubility, leading to higher concen-
trations for interaction with chitosan (Chen et al. 2019). 
By introducing new functional groups, EDTA modifies 
chitosan’s surface, creating more binding sites for metal 
ions (Ali and Gupta 2006). Furthermore, EDTA reduces 
competition for adsorption sites, enhancing metal ion 
uptake by chitosan-based adsorbents (Tufekci and Guzel 
2017).

These crosslinked chitosan-EDTA systems possess 
potential applications due to their photoluminescence 
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properties (Sayaka and Nobuo 2016) and have been 
explored for heavy metal removal by flocculation (Verma 
et al. 2022). Additionally, EDTA-linked chitosan (ED-ch) 
demonstrates strong chelating ability and water solubil-
ity, making it valuable for biomedical applications, such 
as drug delivery systems that overcome the limitations of 
native chitosan (Verma et al. 2022).

Chitosan-silver nanocomposites exhibit dual func-
tionality, serving as both biosensors and potential can-
cer treatment agents. The specificity of chitosan to 
cancer cells enhances its effectiveness in cancer treat-
ment (Govindan et al. 2012). Additionally, the nanocom-
posite demonstrates strong antimicrobial properties and 
biosensing capabilities (Sanpui et al. 2008). To the best of 
our knowledge, this is the first report on the use of chi-
tosan from Archachatina marginata shells in combina-
tion with ethylenediaminetetracetic acid (EDTA) as both 
a capping and reducing agent in the formation of silver 
nanoparticles (Almalah et al. 2019; Marambio-Jones and 
Hoek 2010). This study’s main objectives were to syn-
thesize chitosan-modified EDTA silver nanocomposite, 
characterize the nanocomposite, and evaluate its anti-
bacterial activity against clinical strains of Staphylococcus 
saprophyticus DSM 18669 and Escherichia coli 0157.

Materials and methods
Synthesis of chitosan
Chitosan was extracted from the shells of A. marginata 
as shown in Scheme 1 (Oyekunle and Omoleye 2019).

Preparation of chitosan crosslinked EDTA
A 100  mL solution of acetic acid (1% v/v) and 1  g of 
chitosan was continuously agitated on a magnetic stir-
rer till complete dissolution was achieved. Thereafter, 

0.34  g of EDTA was introduced to the chitosan solu-
tion in a 250-mL beaker and was stirred at 70 °C for 1 h 
30 min. After that, the reaction mixture was vigorously 
stirred with 32  mL of ethanol until the clear solution 
turned opalescent. Centrifugation was used to purify 
the sample, and it was then re-dispersed into an etha-
nol solution and filtered (40% v/v) (Lin et al. 2011).

Preparation of chitosan crosslinked‑ EDTA‑ silver 
nanocomposite (CCESN)
Fifty milliliters of chitosan-EDTA suspension (0.001%) 
and 1.0 mL of  AgNO3 solution (5 mM) were added to 
a 250-mL flask to form chitosan-linked EDTA-silver 
nanocomposite (CCESN). For ten minutes at 25 ± 2 °C, 
the flask’s contents were continuously swirled. The mix-
ture was maintained at 25 °C for 10 min under uniform 
agitation. This was followed by a dropwise addition of 
0.1  M NaOH solution to keep the solution at 10. The  
reaction mixture passed through gradual color transition 
from off-white to light brown, then to a darker shade 
that remained unchanged indicating the end of the reac-
tion after 5 h. The content was allowed to cool followed 
by filtration and drying processes (Lin et al. 2011).

Characterization of the CCESN
Ultraviolet–visible spectrometry
Shimadzu UV-1900 UV Vis Spectrophotometer was 
used to perform UV–Vis spectrophotometry in the 
190–1100 nm wavelength range (Rana et al. 2023). The 
reduction of silver ions into silver atoms (zerovalent 
state) was monitored via measurement of the absorb-
ance of aliquots of the reaction mixture as the reaction 
progressed (Rajeshkumar and Santhiyaa 2018).

Scheme 1 Synthesis of chitosan from the shells of Archachatina marginata 
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Transmission electron microscopy
Tecnai G2 Spirit TWIN FEI, Netherlands LaB6 micro-
scope was used to investigate the morphology and dis-
tribution of the synthesized CCESN (Martin et al. 2010; 
de Marco et al. 2023). A small amount of the synthesized 
nanocomposite was placed on a carbon-coated copper 
grid, left to dry, and analyzed (Li 2024).

Scanning electron microscopy
Scanning electron microscopy (SEM) was used to ana-
lyze cellular morphology, size, and shape. The Phenom-
World PRO:X 800–07334 scanning microscope from 
Thermo Fisher Scientific Company in Switzerland, serial 
number MVE01570775, was utilized for the SEM exami-
nation. The sputter coater was used to provide a 25-nm 
gold coating to an aluminum stub that held the sample 
at 25  mm in diameter. The sample then adhered to the 
carbon disc. The samples were then scanned using a 5-kV 
accelerating voltage and a backscattered electron detec-
tor with a focussed fine stream of secondary electrons.

X‑ray diffractometry
An ARL’XTRA diffractometer from Thermo Fisher Sci-
entific Company Switzerland was used to obtain the ori-
entation and phase of the nanocomposite. Measurements 
were performed in the 2θ range from 10° to 70°, utilizing 
Cu Kα radiation with a wavelength (λ) of 1.5406  Å and 
a Nickel monochromator. The diffractometer was oper-
ated at 40 kV and a current of 30 mA (Kaur et al. 2023). 
A small portion of the synthesized CCESN was placed in 
a sample holder and inserted into the equipment giving 
diffraction patterns. Scherer’s equation was used to cal-
culate the average size of the crystallites in the nanocom-
posite (Kaviya et  al. 2011). D = k�/β cos θ ; D = average 
crystallite size, K = Scherer coefficient (0.89), λ = X-ray 
wavelength (λ–1.5406 Å), θ = Bragg’s angle ( θ ) and β- full 
width at maximum (FWHM) in radians (Kaviya et  al. 
2012).

Energy dispersive X‑ray spectroscopy
An X-ray microanalyzer (Oxford 6587 INCA, Oxford 
Instruments, Abingdon, UK) was linked to a transmission 
electron microscope (TEM) detector (Phillips/FEI CM 
120 BioTwin) to determine the elemental composition 
of the synthesized CCESN. The measurement was con-
ducted after placing the dried sample on a copper grid 
coated with carbon (Tszyde et al. 2021; Jia et al. 2023).

Energy‑dispersive X‑ray fluorescence
The Thermo Scientific X-ray Fluorescence (XRF) Epsilon 
Spectrometer, specifically the energy dispersive X-ray 
fluorescence (EDXRF) technique, was employed for the 

elemental identification of the synthesized CCESN. Fol-
lowing a 10-min evacuation with a vacuum pump to 
eliminate oxygen and moisture from the sample holders, 
the samples were prepared for analysis using the XRF 
Spectrometer.

Thermogravimetric analysis
Thermogravimetric Analysis (TGA) of the CCESN  
was conducted using a TGA 4000 thermal analyzer  
(Perkin Elmer Life Netherlands) instrument. The analysis  
involved heating at a rate of 10 °C/min, ranging from 27  
to 800  °C, under a nitrogen atmosphere to study the 
thermal behavior of the synthesized CCESN.

Antibacterial assay
Zone of inhibition
The disk diffusion method was employed to assess the 
antimicrobial efficacy of the synthesized CCESN against 
clinical strains of Staphylococcus saprophyticus DSM 
18669 and Escherichia coli 0157 (Hegstad et  al. 2014). 
These strains were sourced from the microbial bank 
located at the Department of Pharmaceutical Technol-
ogy, Faculty of Pharmacy, University of Lagos, Idi Araba, 
Nigeria. Antimicrobial discs containing the synthesized 
CCESN (40  mg/mL) were placed on Potato Dextrose 
Agar (PDA) plates using sterile forceps. The placement 
of the discs on the plates ensured a minimum center-to-
center distance of 24 mm, and they were positioned at a 
distance of at least 10 to 15 mm from the edge of the Petri 
dish. Standard solutions of pure Levofloxacin were used 
as a positive control. 0.05 g of Levofloxacin dissolved in 
10 mL of sterile distilled water was used to obtain a stock 
concentration of 5000  mg/mL. Subsequently, a two-fold 
dilution was performed yielding different concentrations 
of 0.05, 0.025, 0.0125, and 0.0063 mg/mL (Zulkipli et al. 
2022). The zones of inhibition of bacteria were measured 
in triplicates following a 24-h incubation of the plates at 
37 °C (Cyriac et al. 2013).

Minimum inhibitory concentration (MIC)
The broth microdilution assay was used to determine the 
minimum inhibitory concentration (MIC) (Limam et al. 
2011). The synthesized CCESN was diluted in a Giolitti 
and Cantoni Broth (GCB) medium with a pH of 6 and  
placed in standard Bioscreen C 100 well microtitre plates. 
Calibration of the bacterial cell suspension (2 ×  108 cfu/mL)  
was achieved using McFarland 0.5 turbidity standard. 
After inoculating the test strains into microtitre plates 
containing 10  mL of prepared normal saline, the plates 
were then incubated at 37  °C for 24  h. The concentra-
tion of the test microorganisms was 1.5 ×  108  cfu/mL.  
After the incubation period, the suspension was 
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additionally diluted in normal saline to achieve a final 
inoculum with a microbial concentration of  108 cfu/mL.  
The Ag nanocomposite was diluted by a factor of two in 
sterile broth, commencing at an initial concentration of 
40  mg/mL. Subsequent dilutions were prepared at con-
centrations of 20, 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.1563, 
0.0781, 0.0391, 0.0195, and 0.0978  mg/mL, respectively 
(Nafis et  al. 2021). The lowest concentration at which 
bacterial growth is inhibited is the MIC.

Statistical analysis
The evaluation of antimicrobial test data included calculat-
ing means and mean deviations from triplicate determina-
tions. To assess significance, an ANOVA test was performed 
using GraphPad Software Inc. in San Diego, USA.

Results and discussion
UV–visible spectroscopy
Figure  1a illustrates the transformation of silver ions 
 (Ag+) into zerovalent silver  (Ag0), manifested by a color 
shift from off-white to dark brown throughout the reac-
tion. The color change in this study deviated from the 
color change reported by other authors; a quick transfor-
mation from pale brown to yellow–brown color (Perera 
et al. 2013; Zain et al. 2014). However, the main indica-
tor of a successful noble metal nanoparticle synthesis 
is a shift in the solution’s color (Rezazadeh et  al. 2020). 
According to Sastry et  al. (2003), silver nanoparticles 
were observed to exhibit a diverse range of colors, ranging 
from light yellow to brown.

A strong peak at λmax = 435  nm indicates surface 
plasmon resonance (SPR) that occurs due to the excita-
tion of free ions on the surface of the metal ion signify-
ing the formation of silver nanoparticles (Fig. 1b) (Shukla 
and Iravani 2018). Additionally, the occurrence of a peak 
between 200 and 300  nm involving n → π* and π → π* 
transitions is due to the chelation between chitosan and 
EDTA (Yan et al. 2014; Kumar et al. 2017). This can also 
be attributed to charge transfer transitions in the syn-
thesized CCESN. These transitions typically involve the 
transfer of an electron from a donor (chitosan/EDTA 
a ligand) to an acceptor (silver atom as metal center) 
(Kumar 2009; Shweta et al. 2019). Finally, the absence of 
other peaks within the range of 460 to 1000 nm suggests 
minimal aggregation of the nanoparticles, which con-
tributes to their overall stability (Gahlawat and Choud-
hury 2019; Rezazadeh et  al. 2020). In the literature, an 
absorbance peak above 400 nm in the UV–Vis spectrum 
is widely accepted as an indicator for the formation of 
AgNPs (Varadavenkatesan, et al. 2020).

Furthermore, the absence of other peaks within the 
range of 460 to 1000  nm indicates little agglomeration, 
therefore enhancing the stability of the silver NPs (Gahla-
wat and Choudhury 2019; Rezazadeh et al. 2020). In the  
literature, an absorbance peak above 400  nm in the 
UV–Vis spectrum is widely used as an indicator for the 
formation of silver NPs (Varadavenkatesan, et al. 2020).

TEM analysis
Figure  2 shows the synthesized CCESN size and shape 
with 200  nm scale bars. The average size determined 
with ImageJ software, was 45.30 nm. According to TEM 
micrographs, the majority of the silver particles exhibited 
a spherical shape and were polydispersed (Kaviya et  al. 
2011; Zain et al. 2014; Satapathy et al. 2015; Baran et al. 
2023).

The micrographs also showed that a thin layer of chi-
tosan-crosslinked EDTA covered the silver nanoparticles 
(indicated by a blue arrow in the diagram) thus confirm-
ing the capping effect of the crosslinker (Jalilian et  al. 
2020).

SEM analysis
Figure  3a, b shows the surface morphology and shape 
of the synthesized CCESN taken at a magnification of 
500 and a scale of 100 µm and 300 and a scale of 200 µm 
respectively consisting of irregularly shaped particles 
with a rough surface texture. The average size determined 
with ImageJ software, was 59.45 nm. Figure 3a, b shows 
darker, well-defined spots and clusters throughout the 
image are the silver nanoparticles. These nanoparticles 
are distributed within the chitosan matrix. They appear 
darker because silver has a higher atomic number and 
thus scatters electrons more strongly than the surround-
ing chitosan. The silver nanoparticles vary in size and 
shape but generally appear as small, roughly spherical, or 
slightly elongated particles. This is similar to a report by 
Gupta et al. (2020) on the spherical morphology of chi-
tosan-EDTA silver nanoparticles using a green synthesis 
approach. However, due to interactions between chitosan 
and silver nanoparticles, some degree of agglomeration 
was observed in the SEM images (Koushkaki et al. 2019). 
Overall, the image demonstrates a successful embedding 
of silver nanoparticles within a chitosan matrix, poten-
tially modified with EDTA to enhance the binding and 
stabilization of the nanoparticles. The uniform distribu-
tion and the presence of discrete nanoparticles within the 
matrix are indicative of the successful synthesis of silver 
nanoparticles.
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X‑ray diffraction pattern
Figure 4 depicts distinct diffraction peaks of the synthe-
sized CCESN. These peaks occur at 38.62°, 42.95°, 45.99°, 
52.5°, and 60.01°, indicating the presence of crystalline 
silver particles. The Miller indices (h k l) for the (111), 
(200), (220), and (311) planes indicate that the metallic 

silver atoms have a face-centered cubic (fcc) crystal struc-
ture (Helmlinger et al. 2016; Parvathiraja et al. 2021).

The crystallites in the synthesized CCESN have an 
average size of 22.20 nm, calculated by the Debye–Scher-
rer equation. These XRD findings align with the TEM 
results, providing further evidence for the formation of 

Fig. 1 a The CCESN solution after completion of the synthesis. b UV–Vis spectrum of the synthesized CCESN
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silver NPs. It is important to note the presence of com-
paratively weaker peaks in the X-ray diffraction pattern. 
These weaker peaks might be attributed to the presence 
of chitosan and EDTA components within the nano-
composite which are linked to several factors including 
the semi-crystalline nature of chitosan and EDTA: com-
pared to crystalline silver, chitosan and EDTA are mostly 
amorphous, meaning they lack a well-defined long-range 
order in their atomic structure. This characteristic of 
amorphous materials generally results in weaker and 
broader peaks in the XRD pattern (Suryanarayana 1998). 
Lower concentration of chitosan and EDTA: typically, 
chitosan and EDTA are present in smaller quantities 
compared to silver in the nanocomposite. According to 
the principles of X-ray diffraction, the concentration of 
a crystalline phase can influence the intensity of its cor-
responding peaks in the pattern (Singh 2011). Therefore, 
the weaker peaks might be due to the lower concentra-
tion of chitosan and EDTA’s crystalline phases within the 
nanocomposite.

EDX profile
Figure 5 shows the EDX spectrum displaying peaks cor-
responding to several elements, including silver (Ag), 
carbon (C), oxygen (O), copper (Cu), copper (Cu), 
and calcium (Ca). The presence of silver peaks within 

2.0–3.6  keV confirms the presence of silver nanoparti-
cles in the chitosan-EDTA composite (Vanaja, et al. 2014; 
Singh et al. 2015; Atalar, et al. 2022). This result also sup-
ports the UV Vis (SPR) and XRD results. Carbon and 
oxygen are likely from the chitosan component (Huang 
et al. 2016) while copper, iron, sulfur, and calcium may be 
residual elements from the synthesis process or contami-
nants (Bjerrum et al. 1958; Rastl et al. 2017). Overall, the 
EDX profile confirms the presence of silver nanoparticles 
within the chitosan-EDTA composite, along with other 
elements likely from chitosan, EDTA, and potentially the 
synthesis process.

Energy‑dispersive X‑ray fluorescence
Silver was detected as shown in Fig. 6. At 3.00 keV, a very 
strong signal was observed; the binding energy typical 
of silver indicated the formation of silver nanoparticles 
(Govindan et al. 2012; Satapathy et al. 2015; Parvathiraja 
et  al. 2021). The presence of calcium, silicon, zinc, and 
iron is due to the chitosan and EDTA. The lack of K and L 
lines prevented the detection of additional chitosan com-
ponents such as carbon, and oxygen. The elemental com-
position from XRD and the EDX spectra, which showed 
the presence of calcium and other elements, corrobo-
rated this finding.

Fig. 2 Micrograph of the synthesized CCESN (200 nm)
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Thermogravimetric analysis
The thermal stability of chitosan and the synthesized 
CCESN was evaluated under an air atmosphere at the 
range of 20–800  °C and a rate of 5  °C/min (Fig.  7a, b). 
Figure 7a shows the TGA profile of chitosan. At the first 
degradation step (a), approximately 89% of the weight 
is lost around 275  °C. This significant loss is attributed 
primarily to the removal of physically adsorbed water, 
impurities, and volatile matter. The high percentage of 
weight loss in this stage indicates the presence of sub-
stantial moisture content and non-bound volatiles within 

the chitosan. This observation is consistent with find-
ings from similar studies, where initial weight losses are 
linked to the desorption of water and volatile substances 
(Kumar et al. 2018).

The second degradation step (b) occurs at around 
363  °C, where an additional 57% of weight is lost. This 
stage corresponds to the removal of amino groups and 
the onset of degradation of the glycosidic polymer back-
bone. The breakdown of these components signifies the 
beginning of the thermal decomposition of chitosan’s 
polymer structure, which is essential for understanding 

Fig. 3 a SEM micrograph of CCESN at a magnification of 300 and 100 µm. b SEM micrograph of CCESN at a magnification of 300 and 200 µm
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its thermal stability and structural integrity. Recent litera-
ture supports this observation, highlighting the critical 
role of amino groups and glycosidic bonds in the thermal 
decomposition process (Alves et al. 2019).

During the third degradation step (c), occurring at 
approximately 438 °C, chitosan experiences an additional 
weight loss of about 18%. This weight loss is associated 
with the further degradation of the glycosidic polymer 
backbone and other side chains. The continued break-
down of the polymer chain reflects the progressive 
decomposition of chitosan’s structural elements, result-
ing in a more complex mixture of degradation products. 
This behavior aligns with findings from recent studies, 
which document the ongoing decomposition of chi-
tosan’s polymeric structure (Zhang et al. 2020a, b).

In the fourth degradation step (d), at around 610  °C, 
chitosan has lost about 9% of its weight. This final stage 
of weight loss is associated with the formation of amor-
phous carbon materials, charred aromatic residues, and 
oxides of metals present in chitosan. The residual weight 
loss indicates the formation of a carbonaceous char and 
potentially inorganic residues, reflecting chitosan’s abil-
ity to form stable carbon residues at high temperatures. 
This result provides insights into the material’s behavior 
under extreme conditions and aligns with observations 

from recent research on the thermal stability of chitosan 
(Melo et al. 2021).

Figure 7b shows the TGA profile of CCESN. The first 
degradation (a) occurred around 156  °C with a weight 
loss of 97%. This weight loss corresponds to the removal 
of moisture, physically adsorbed water, or volatile com-
ponents in the nanocomposite. The second degradation 
(b) occurred around 311  °C with a weight loss of 96%. 
This weight loss in this region can be attributed to the 
depolymerization and decomposition of chitosan poly-
mer chains and EDTA molecules (desorption process). 
Also, this can be attributed to the stabilization/capping 
and reduction of silver NP. The addition of EDTA may 
influence the onset temperature and extent of degra-
dation in this step, indicating potential interactions or 
modifications to the nanocomposite structure. The third 
degradation (c) and fourth degradation (d) occurred 
around 363  °C and 464  °C with a weight loss of 18% of 
68% respectively. The weight loss in these regions is an 
indication of the decomposition or oxidation of silver 
nanoparticles. Changes in temperature and weight loss 
patterns in this step can indicate specific interactions 
between the chitosan, EDTA, and silver, as a result of 
complexation, coordination, or phase changes. Also, 
silver ions might interact with chitosan, affecting its 

Fig. 4 XRD pattern of synthesized CCESN
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thermal stability and leading to additional decomposition 
steps. Furthermore, the highest temperature at this stage 
is an attestation to the existence of Ag nanoparticles 
hence thermal stability of the nanocomposite was altered 
(Parvez et al. 2012; Maciel et al. 2015). The multiple deg-
radation steps likely reflect complex interactions between 
chitosan, EDTA, and silver components. The presence of 
additives or metals can influence the final stages of deg-
radation, potentially altering the formation of residues or 
ash and affecting the overall thermal stability of the mate-
rial. Overall, this phenomenon is vital for designing and 
implementing heterogeneous biomedical and medical 
sensing and imaging applications, which need to be recy-
cled and heated repeatedly during thermal reactivation.

Step‑by‑step chemical reactions for CCSEN formation
The formation of the CCSEN can be represented by a 
series of chemical reactions:

1. Potential crosslinking between chitosan and EDTA

2. Interaction between chitosan and silver ions

3. Reduction of silver ions by ethanol

Overall formation reaction

Chitosan − NH2+H0− EDTA− > Chitosan

− N (H)− CH2− CH2− O − EDTA(i)

Chitosan − NHg2+ AgNO
3
→ Chitosan − NH+

2
+ NO−

3
+ Ag+(ii)

Chitosan − OH + AgNO
3
− > Chitosan − O−

+ NO−

3
+ Ag+(iii)

C2H5OH +H+
− > CH3CH2O

+
+H2(iv)

CH3CH2O
+
+ e−− > CH3CH2OH(v)

2Ag+ + 2e−− > 2Ag(vi)

Chitosan − (NH2 or OH)+ AgNO3 + C2H5OH

− > Chitosan − Ag + NO3
−
+ CH3CH2OH

+H2O + Ag NPs(vii)

Fig. 5 EDX spectrum of the synthesized CCESN
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Mechanism of formation synthesized CCESN: interaction 
between chitosan, EDTA, and silver nanoparticles
We proposed that the synthesized CCESN occurred 
via an additional reaction  (NH2 group from chitosan 
and OH from EDTA) leading to a polymeric chain. 
The polar hydroxyl and ether groups of chitosan are 
expected to interact with electropositive silver cations. 
As a result,  AgNO3 combined with chitosan solution 
in the presence of ethanol;  Ag+ ions may form elec-
trostatic (ion–dipole) interactions with chitosan mac-
romolecules. Furthermore, ethanol, acting as a protic 
solvent, supplies electrons to reduce silver ions into 
zerovalent silver (Chou et  al. 2005). Ag nanoparticles 
were synthesized through the reduction of  Ag+ utiliz-
ing ethanol and chitosan as the reducing and stabilizing 
agents, respectively. Chitosan contains hydroxyl groups 
that aid in the passivation of the particle surfaces. 
In the absence of this passivation, the nanoparticles 
would aggregate due to their elevated surface energies. 
The proposed structure of the synthesized CCESN is 
depicted in Fig.  8. The interaction between chitosan 
and silver nanoparticles in the composite is a crucial 
aspect of its antimicrobial activity. Chitosan due to the 
presence of hydroxyl and amino groups stabilizes silver 
nanoparticles, limiting their aggregation and enhancing 

their bioavailability (Zhang et  al. 2020a, b). Addition-
ally, chitosan possibly reduces the toxicity of silver 
nanoparticles by binding to their surface and prevent-
ing their interaction with cellular components (Saha 
et al. 2020). The interaction between chitosan and silver 
nanoparticles also enhances the antimicrobial activity 
of the composite, as chitosan helps silver nanoparticles 
penetrate deeper into microbial cells (Tran et al. 2019).

Antibacterial study
The analysis of the antimicrobial activity of the synthe-
sized CCESN and Levofloxacin against S. saprophyticus 
DSM 18669 and E. coli strain 0157 (Figs. 9a, b and 10a, 
b) reveals significant insights with substantial practical 
implications. The synthesized CCESN demonstrated a 
remarkably larger zone of inhibition (46.0  mm) against 
S. saprophyticus compared to all tested concentrations 
of Levofloxacin (Table 1). This indicates its superior anti-
bacterial efficacy. Statistical analysis confirms that the 
inhibition zones for the silver nanocomposite are signifi-
cantly larger than those for levofloxacin, underscoring its 
potent antimicrobial properties.

In contrast, for E. coli, the silver nanocomposite 
at the same concentration showed a zone of inhibi-
tion of 25.70  mm (Table  2). Levofloxacin at 0.05  mg/

Fig. 6 EDXRF spectrum of the synthesized CCESN
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mL exhibited a larger zone of inhibition (30.33  mm), 
indicating higher effectiveness at this concentration. 
However, the silver nanocomposite demonstrated com-
parable effectiveness to levofloxacin at lower concen-
trations (0.025  mg/mL and 0.0125  mg/mL). Notably, no 
inhibition was observed for levofloxacin at 0.0063  mg/
mL, whereas the silver nanocomposite maintained 

antibacterial activity, indicating its potential for sustained 
effectiveness at lower concentrations.

The findings underscore the potential of silver nano-
particles synthesized with chitosan-EDTA as potent 
antimicrobial agents, particularly against S. saprophyti-
cus. This effectiveness makes them suitable for various 
applications, including medical devices, coatings, and 

Fig. 7 a Thermogram profile of the synthesized chitosan; a (initial degradation); b (second degradation); c (third degradation); d (fourth 
degradation). b Thermogram profile of the synthesized CCESN; a (initial degradation); b (second degradation); c (third degradation); d (fourth 
degradation)
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treatments aimed at preventing bacterial contamina-
tion. The differential effectiveness against S. saprophyti-
cus and E. coli emphasizes the importance of selecting 
antimicrobial treatments based on the specific bacterial 
strain being targeted.

The minimum inhibitory concentration (MIC) val-
ues for the synthesized CCESN against both strains are 

identical, as shown in Table 3 (0.0781 mg/mL). This sug-
gests that the synthesized CCESN may have a bacteri-
cidal effect, completely inhibiting bacterial growth, rather 
than a bacteriostatic effect, which only halts growth 
(Zain et al. 2014).

The observed difference in susceptibility between the 
two bacterial strains can be attributed to the variations 

Fig. 8 Proposed structure of the synthesized CCESN

Fig. 9 Zone of inhibition of synthesized CCESN against a Staphylococcus saprophyticus DSM 18669. b Escherichia coli strain 0157
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in their cell wall structure (Pasquina-Lemonche et  al. 
2020). Gram-positive bacteria possess a thicker cell wall 
composed of a more substantial peptidoglycan layer 
compared to the thinner layer found in Gram-negative 

bacteria (Shukla et al. 2013). Additionally, the surface of 
bacteria carries a negative charge due to the presence 
of carboxylic acids and other groups (Stoimenov et  al. 
2002).

The likely mechanism of action for the CCESN against 
S. saprophyticus DSM 18669 involves the release of sil-
ver cations from the nanoparticles. These cations are 
attracted to the negatively charged bacterial surface and 
bind to it. This binding disrupts the bacterial membrane 
integrity, ultimately leading to cell death (Li et  al. 2008; 
Kaviya et al. 2011).

It’s important to note that there is no definitive con-
sensus on whether Gram-positive bacteria are inherently 
more resistant to antimicrobials compared to Gram-neg-
ative bacteria (Ahmed et al. 2022).

Conclusion
This study provides an alternative pathway to the syn-
thesis of silver NPs from the chitosan-modified EDTA. 
The chitosan was derived from the shells of A. marginata 
considered agricultural wastes. This method is sustaina-
ble, cost-effective, and environmentally friendly. The con-
firmation of silver formation in the nanocomposite was 
achieved through various characterization techniques, 
including TEM, SEM, XRD, EDX, EDXRF, TGA, and 
UV–visible. The antibacterial activity of the CCESN is 
comparable to Levofloxacin, while it exhibited the same 
identical Minimum Inhibitory Concentration (MIC) val-
ues against both strains. Consequently, the synthesized 
CCESN holds promise for diverse antibacterial applica-
tions such as medical implants, bioactive food packaging 
systems, and drug delivery.
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